-
Notifications
You must be signed in to change notification settings - Fork 0
/
preact_resnet_models.py
executable file
·395 lines (352 loc) · 12.1 KB
/
preact_resnet_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ResNet v2 model for Keras using Batch or Group Normalization.
Related papers/blogs:
- http://arxiv.org/pdf/1603.05027v2.pdf
"""
import tensorflow as tf
import tensorflow_addons.layers.normalizations as tfa_norms
import edward2 as ed
BATCH_NORM_DECAY = 0.9
BATCH_NORM_EPSILON = 1e-5
L2_WEIGHT_DECAY = 1e-4
def _norm_relu(input_tensor, norm='group', training=True):
"""Helper function to make a Norm -> ReLU block."""
if tf.keras.backend.image_data_format() == 'channels_last':
channel_axis = 3
else:
channel_axis = 1
if norm == 'group':
x = tfa_norms.GroupNormalization(axis=channel_axis)(input_tensor)
else:
x = tf.keras.layers.BatchNormalization(
axis=channel_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON)(input_tensor, training)
return tf.keras.layers.Activation('relu')(x)
def _conv_norm_relu(input_tensor,
filters,
kernel_size,
strides=(1, 1),
norm='group',
training=True):
"""Helper function to make a Conv -> Norm -> ReLU block."""
x = tf.keras.layers.Conv2D(
filters,
kernel_size,
strides=strides,
padding='same',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(L2_WEIGHT_DECAY))(
input_tensor)
return _norm_relu(x, norm=norm, training=training)
def _norm_relu_conv(input_tensor,
filters,
kernel_size,
strides=(1, 1),
norm='group',
training=True):
"""Helper function to make a Norm -> ReLU -> Conv block."""
x = _norm_relu(input_tensor, norm=norm, training=training)
x = tf.keras.layers.Conv2D(
filters,
kernel_size,
strides=strides,
padding='same',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(L2_WEIGHT_DECAY))(
x)
return x
def _shortcut(input_tensor, residual, norm='group', training=True):
"""Adds a shortcut between input and the residual."""
input_shape = tf.keras.backend.int_shape(input_tensor)
residual_shape = tf.keras.backend.int_shape(residual)
if tf.keras.backend.image_data_format() == 'channels_last':
row_axis = 1
col_axis = 2
channel_axis = 3
else:
channel_axis = 1
row_axis = 2
col_axis = 3
stride_width = int(round(input_shape[row_axis] / residual_shape[row_axis]))
stride_height = int(round(input_shape[col_axis] / residual_shape[col_axis]))
equal_channels = input_shape[channel_axis] == residual_shape[channel_axis]
shortcut = input_tensor
# 1 X 1 conv if shape is different. Else identity.
if stride_width > 1 or stride_height > 1 or not equal_channels:
shortcut = tf.keras.layers.Conv2D(
filters=residual_shape[channel_axis],
kernel_size=(1, 1),
strides=(stride_width, stride_height),
padding='valid',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(L2_WEIGHT_DECAY))(
shortcut)
if norm == 'group':
shortcut = tfa_norms.GroupNormalization(axis=channel_axis)(shortcut)
else:
shortcut = tf.keras.layers.BatchNormalization(
axis=channel_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON)(shortcut, training)
return tf.keras.layers.add([shortcut, residual])
def _basic_block(input_tensor,
filters,
strides=(1, 1),
avoid_norm=False,
norm='group',
training=True):
"""Basic convolutional block for use on resnets with <= 34 layers."""
if avoid_norm:
x = tf.keras.layers.Conv2D(
filters=filters,
kernel_size=(3, 3),
strides=strides,
padding='same',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(L2_WEIGHT_DECAY))(
input_tensor)
else:
x = _norm_relu_conv(
input_tensor,
filters=filters,
kernel_size=(3, 3),
strides=strides,
norm=norm,
training=training)
x = _norm_relu_conv(
x,
filters=filters,
kernel_size=(3, 3),
strides=strides,
norm=norm,
training=training)
return _shortcut(input_tensor, x, norm=norm)
def _bottleneck_block(input_tensor,
filters,
strides=(1, 1),
avoid_norm=False,
norm='group',
training=True):
"""Bottleneck convolutional block for use on resnets with > 34 layers."""
if avoid_norm:
x = tf.keras.layers.Conv2D(
filters=filters,
kernel_size=(1, 1),
strides=strides,
padding='same',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(L2_WEIGHT_DECAY))(
input_tensor)
else:
x = _norm_relu_conv(
input_tensor,
filters=filters,
kernel_size=(1, 1),
strides=strides,
norm=norm,
training=training)
x = _norm_relu_conv(
x,
filters=filters,
kernel_size=(3, 3),
strides=strides,
norm=norm,
training=training)
x = _norm_relu_conv(
x,
filters=filters * 4,
kernel_size=(1, 1),
strides=strides,
norm=norm,
training=training)
return _shortcut(input_tensor, x, norm=norm, training=training)
def _preact_block(input_tensor,
filters,
strides=(1, 1),
avoid_norm=False,
norm='group',
training=True):
"""Basic convolutional block for use on resnets with <= 34 layers."""
in_channels = input_tensor.get_shape()[-1]
x = _norm_relu(input_tensor, norm=norm, training=training)
is_irregular_shortcut = strides[0] != 1 or in_channels != filters
if is_irregular_shortcut:
shortcut = tf.keras.layers.Conv2D(
filters,
kernel_size=(1, 1),
strides=strides,
padding='same',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(L2_WEIGHT_DECAY))(
x)
else:
shortcut = x
x = tf.keras.layers.Conv2D(
filters,
kernel_size=(3, 3),
strides=strides,
padding='same',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(L2_WEIGHT_DECAY))(
x)
x = _norm_relu_conv(
x,
filters=filters,
kernel_size=(3, 3),
strides=(1, 1),
norm=norm,
training=training)
x += shortcut
return x
def _residual_block(input_tensor,
block_function,
filters,
num_blocks,
strides=(1, 1),
is_first_layer=False,
norm='group',
training=True):
"""Builds a residual block with repeating bottleneck or basic blocks."""
strides = [strides] + [(1, 1)] * (num_blocks - 1)
x = input_tensor
for i in range(num_blocks):
# avoid_norm = is_first_layer and i == 0
avoid_norm = 0
x = block_function(
x,
filters=filters,
strides=strides[i],
avoid_norm=avoid_norm,
norm=norm,
training=training)
return x
def create_resnet(input_shape,
num_classes=10,
block='bottleneck',
repetitions=None,
initial_filters=64,
initial_strides=(2, 2),
initial_kernel_size=(7, 7),
initial_pooling='max',
norm='group',
dense_layer='dense',
dense_layer_args=None):
"""Instantiates a ResNet v2 model with Group Normalization.
Instantiates the architecture from http://arxiv.org/pdf/1603.05027v2.pdf.
The ResNet contains stages of residual blocks. Each residual block contains
some number of...
Args:
input_shape: A tuple of length 3 describing the number of rows, columns, and
channels of an input. Can be in channel-first or channel-last format.
num_classes: Number of output classes.
block: Whether to use a bottleneck or basic block within each stage.
repetitions: A list of integers describing the number of blocks within each
stage. If None, defaults to the resnet50 repetitions of [3, 4, 6, 3].
initial_filters: The number of filters in the initial conv layer.
initial_strides: The strides in the initial conv layer.
initial_kernel_size: The kernel size for the initial conv layer.
initial_pooling: The type of pooling after the initial conv layer.
norm: Type of normalization to be used. Can be 'group' or 'batch'.
dense_layer: Type of last fully connected layer Can be 'dense',
'dense_diagcov' or 'dense_fullcov'.
dense_layer_args: Args for the last fully connected layer.
Returns:
A `tf.keras.Model`.
Raises:
Exception: Input shape should be a tuple of length 3.
"""
training = tf.keras.Input(shape=[], name='training')
if len(input_shape) != 3:
raise Exception('Input shape should be a tuple of length 3.')
if repetitions is None:
repetitions = [3, 4, 6, 3]
if block == 'basic':
block_fn = _basic_block
elif block == 'bottleneck':
block_fn = _bottleneck_block
elif block == 'preact':
block_fn = _preact_block
img_input = tf.keras.layers.Input(shape=input_shape)
x = _conv_norm_relu(
img_input,
filters=initial_filters,
kernel_size=initial_kernel_size,
strides=initial_strides,
norm=norm,
training=training)
if initial_pooling == 'max':
x = tf.keras.layers.MaxPooling2D(
pool_size=(3, 3), strides=initial_strides, padding='same')(
x)
filters = initial_filters
strides = [1, 2, 2, 2]
for i, r in enumerate(repetitions):
x = _residual_block(
x,
block_fn,
filters=filters,
num_blocks=r,
strides=(strides[i], strides[i]),
is_first_layer=(i == 0),
norm=norm,
training=training)
filters *= 2
# Final activation in the residual blocks
x = _norm_relu(x, norm=norm, training=training)
# Classification block
x = tf.keras.layers.GlobalAveragePooling2D()(x)
if dense_layer == 'dense':
x = tf.keras.layers.Dense(
num_classes,
# activation='softmax',
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
# kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=None)(
x)
elif dense_layer == 'dense_diagcov':
x = ed.layers.MCSoftmaxDense(**dense_layer_args)(x)
elif dense_layer == 'dense_fullcov':
x = ed.layers.MCSoftmaxDenseFA(**dense_layer_args)(x)
else:
raise ValueError('Unkown last layer type: {}'.format(dense_layer))
model = tf.keras.models.Model(inputs=[img_input, training], outputs=x)
return model
def create_resnet18(input_shape,
num_classes,
norm='group',
dense_layer='dense',
dense_layer_args=None):
"""ResNet with 18 layers and basic residual blocks."""
return create_resnet(
input_shape,
num_classes,
'preact',
repetitions=[2, 2, 2, 2],
norm=norm,
initial_strides=(1, 1),
initial_kernel_size=(3, 3),
initial_pooling='none',
dense_layer=dense_layer,
dense_layer_args=dense_layer_args)