-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem12.fsx
39 lines (28 loc) · 1002 Bytes
/
problem12.fsx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
(* Project Euler Problem 12
* By Weisi Dai <weisi@x-research.com>
*)
let ubound = 500
let triangular = Seq.initInfinite (
fun index ->
(index + 2) * (index + 1) / 2
)
let isPrime x =
seq { 2 .. (x |> float |> sqrt |> int) }
|> Seq.exists (fun divisor -> x % divisor = 0) |> not
let numberOfDivisors n =
let rec primePower n m from =
if n % m = 0 then primePower (n / m) m (from + 1)
else from
let rec numberOfDivisorsGreaterThan n m current =
if m > n then current else
let power = if isPrime m then primePower n m 0 else 0
numberOfDivisorsGreaterThan (n / (pown m power)) (m + 1) (current * (power + 1))
numberOfDivisorsGreaterThan n 2 1
let highlyDivisible = seq {
for i in triangular do
if numberOfDivisors i > ubound then
yield i
}
let problem12 = Seq.head highlyDivisible
let main = printfn "The answer is %d." (problem12)
main