-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference.py
121 lines (99 loc) · 3.81 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import time
import torch
import click
import os
import glob
import numpy as np
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.nn import CrossEntropyLoss
from torch import nn
from torch.nn import functional as F
from scipy import stats
from ont_fast5_api.fast5_interface import get_fast5_file
from model import ResNet
from model import Bottleneck
########################
##### Normalization ####
########################
def normalization(data_test, batchi):
mad = stats.median_abs_deviation(data_test, axis=1, scale='normal')
m = np.median(data_test, axis=1)
data_test = ((data_test - np.expand_dims(m,axis=1))*1.0) / (1.4826 * np.expand_dims(mad,axis=1))
x = np.where(np.abs(data_test) > 3.5)
for i in range(x[0].shape[0]):
if x[1][i] == 0:
data_test[x[0][i],x[1][i]] = data_test[x[0][i],x[1][i]+1]
elif x[1][i] == 2999:
data_test[x[0][i],x[1][i]] = data_test[x[0][i],x[1][i]-1]
else:
data_test[x[0][i],x[1][i]] = (data_test[x[0][i],x[1][i]-1] + data_test[x[0][i],x[1][i]+1])/2
data_test = torch.tensor(data_test).float()
print("[Step 2]$$$$$$$$$$ Done data normalization with batch "+ str(batchi))
return data_test
########################
####### Run Test #######
########################
def process(data_test, data_name, batchi, bmodel, outfile, device):
with torch.no_grad():
testx = data_test.to(device)
outputs_test = bmodel(testx)
with open(outfile + '/batch_' + str(batchi) + '.txt', 'w') as f:
for nm, val in zip(data_name, outputs_test.max(dim=1).indices.int().data.cpu().numpy()):
f.write(nm + '\t' + str(val)+'\n')
print("[Step 3]$$$$$$$$$$ Done processing with batch "+ str(batchi))
del outputs_test
########################
#### Load the data #####
########################
def get_raw_data(infile, fileNM, data_test, data_name, cutoff):
fast5_filepath = os.path.join(infile, fileNM)
with get_fast5_file(fast5_filepath, mode="r") as f5:
for read in f5.get_reads():
raw_data = read.get_raw_data(scale=True)
if len(raw_data) >= (cutoff + 3000):
data_test.append(raw_data[cutoff:(cutoff+3000)])
data_name.append(read.read_id)
return data_test, data_name
@click.command()
@click.option('--model', '-m', help='The pretrained model path and name', type=click.Path(exists=True))
@click.option('--infile', '-i', help='The input fast5 folder path', type=click.Path(exists=True))
@click.option('--outfile', '-o', help='The output result folder path', type=click.Path())
@click.option('--batch', '-b', default=1, help='Batch size')
@click.option('--cutoff', '-c', default=1500, help='Cutoff the first c signals')
def main(model, infile, outfile, batch, cutoff):
start_time = time.time()
if torch.cuda.is_available:device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print("Device: " + str(device))
### make output folder
if not os.path.exists(outfile):
os.makedirs(outfile)
### load model
bmodel = ResNet(Bottleneck, [2,2,2,2]).to(device).eval()
bmodel.load_state_dict(torch.load(model, map_location=device))
print("[Step 0]$$$$$$$$$$ Done loading model")
### load data
data_test = []
data_name = []
batchi = 0
it = 0
for fileNM in glob.glob(infile + '/*.fast5'):
data_test, data_name = get_raw_data(infile, fileNM, data_test, data_name, cutoff)
it += 1
if it == batch:
print("[Step 1]$$$$$$$$$$ Done loading data with batch " + str(batchi)+ \
", Getting " + str(len(data_test)) + " of sequences")
data_test = normalization(data_test, batchi)
process(data_test, data_name, batchi, bmodel, outfile, device)
print("[Step 4]$$$$$$$$$$ Done with batch " + str(batchi))
print()
del data_test
data_test = []
del data_name
data_name = []
batchi += 1
it = 0
print("[Step FINAL]--- %s seconds ---" % (time.time() - start_time))
if __name__ == '__main__':
main()