-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_fedopt.py
703 lines (600 loc) · 20.3 KB
/
_fedopt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
"""
"""
import warnings
from copy import deepcopy
from typing import Any, Dict, List, Sequence
import torch
from torch_ecg.utils.misc import add_docstring, remove_parameters_returns_from_docstring
from tqdm.auto import tqdm
from ...nodes import Client, ClientConfig, ClientMessage, Server, ServerConfig
from .._misc import client_config_kw_doc, server_config_kw_doc
from .._register import register_algorithm
__all__ = [
"FedOptServer",
"FedOptClient",
"FedOptServerConfig",
"FedOptClientConfig",
"FedAvgServer",
"FedAvgClient",
"FedAvgServerConfig",
"FedAvgClientConfig",
"FedAdagradServer",
"FedAdagradClient",
"FedAdagradServerConfig",
"FedAdagradClientConfig",
"FedYogiServer",
"FedYogiClient",
"FedYogiServerConfig",
"FedYogiClientConfig",
"FedAdamServer",
"FedAdamClient",
"FedAdamServerConfig",
"FedAdamClientConfig",
]
@register_algorithm()
@add_docstring(server_config_kw_doc, "append")
class FedOptServerConfig(ServerConfig):
"""Server config for the FedOpt algorithm.
Parameters
----------
num_iters : int
The number of (outer) iterations.
num_clients : int
The number of clients.
clients_sample_ratio : float
The ratio of clients to sample for each iteration.
optimizer : {"SGD", "Adam", "Adagrad", "Yogi"}, default "Adam"
The optimizer to use, case insensitive.
lr : float, default 1e-2
The learning rate.
betas : Sequence[float], default (0.9, 0.99)
The beta values for the optimizer.
tau : float, default 1e-5
The tau value for the optimizer,
which controls the degree of adaptivity of the algorithm.
**kwargs : dict, optional
Additional keyword arguments:
"""
__name__ = "FedOptServerConfig"
def __init__(
self,
num_iters: int,
num_clients: int,
clients_sample_ratio: float,
optimizer: str = "Adam",
lr: float = 1e-2,
betas: Sequence[float] = (0.9, 0.99),
tau: float = 1e-5,
**kwargs: Any,
) -> None:
assert optimizer.lower() in [
"avg",
"adagrad",
"yogi",
"adam",
], f"Unsupported optimizer: {optimizer}."
name = self.__name__.replace("ServerConfig", "")
if kwargs.pop("algorithm", None) is not None:
warnings.warn(
f"The `algorithm` argument is fixed to `{name}` and will be ignored.",
RuntimeWarning,
)
super().__init__(
name,
num_iters,
num_clients,
clients_sample_ratio,
optimizer=optimizer,
lr=lr,
betas=betas,
tau=tau,
**kwargs,
)
@register_algorithm()
@add_docstring(client_config_kw_doc, "append")
class FedOptClientConfig(ClientConfig):
"""Client config for the FedOpt algorithm.
Parameters
----------
batch_size : int
The batch size.
num_epochs : int
The number of epochs.
lr : float, default 1e-2
The learning rate.
optimizer : str, default "SGD"
The name of the optimizer to solve the local (inner) problem.
**kwargs : dict, optional
Additional keyword arguments for specific algorithms
(FedAvg, FedAdagrad, FedYogi, FedAdam). And
"""
__name__ = "FedOptClientConfig"
def __init__(
self,
batch_size: int,
num_epochs: int,
lr: float = 1e-2,
optimizer: str = "SGD",
**kwargs: Any,
) -> None:
name = self.__name__.replace("ClientConfig", "")
if kwargs.pop("algorithm", None) is not None:
warnings.warn(
f"The `algorithm` argument is fixed to `{name}` and will be ignored.",
RuntimeWarning,
)
super().__init__(
name,
optimizer,
batch_size,
num_epochs,
lr,
**kwargs,
)
@register_algorithm()
@add_docstring(
Server.__doc__.replace(
"The class to simulate the server node.",
"Server node for the FedOpt algorithm.",
)
.replace("ServerConfig", "FedOptServerConfig")
.replace("ClientConfig", "FedOptClientConfig")
)
class FedOptServer(Server):
"""Server node for the FedOpt algorithm."""
__name__ = "FedOptServer"
def _post_init(self) -> None:
super()._post_init()
self.delta_parameters = [torch.zeros_like(p) for p in self.get_detached_model_parameters()]
if self.config.optimizer.lower() != "avg":
self.v_parameters = [p.clone() for p in self.delta_parameters]
for p in self.v_parameters:
# initialize v_parameters, >= \tau^2
# FedOpt paper Algorithm 2, line 1
p.data.random_(1, 100).mul_(self.config.tau**2)
else: # FedAvg
# ensure that the unnecessary parameters are
# set correctly for the algorithm "FedAvg"
self.config.lr = 1
# betas[1] can be set arbitrarily since it is not used for "FedAvg"
# betas[0] should be set to 0 since "FedAvg" uses no momentum
self.config.betas = (0, 1)
# tau can be set arbitrarily since it is not used for "FedAvg"
self.config.tau = 1
# set v_parameters to None to avoid unnecessary computation
self.v_parameters = None
@property
def client_cls(self) -> type:
return FedOptClient
@property
def required_config_fields(self) -> List[str]:
return ["optimizer", "lr", "betas", "tau"]
def communicate(self, target: "FedOptClient") -> None:
target._received_messages = {"parameters": self.get_detached_model_parameters()}
def update(self) -> None:
"""Global (outer) update."""
# update delta_parameters, FedOpt paper Algorithm 2, line 10
# self._logger_manager.log_message(
# f"Before line 10: delta_parameters norm = {FedOptServer.get_norm(self.delta_parameters)}"
# )
for idx, param in enumerate(self.delta_parameters):
param.data.mul_(self.config.betas[0])
for m in self._received_messages:
param.data.add_(
m["delta_parameters"][idx].data.detach().clone().to(self.device),
alpha=(1 - self.config.betas[0]) / len(self._received_messages),
)
# self._logger_manager.log_message(
# f"After line 10: delta_parameters norm = {FedOptServer.get_norm(self.delta_parameters)}"
# )
# update v_parameters, FedOpt paper Algorithm 2, line 11-13
optimizer = self.config.optimizer.lower()
if optimizer == "avg":
self.update_avg()
elif optimizer == "adagrad":
self.update_adagrad()
elif optimizer == "yogi":
self.update_yogi()
elif optimizer == "adam":
self.update_adam()
else:
raise ValueError(f"Unknown optimizer: {self.config.optimizer}")
# update model parameters, FedOpt paper Algorithm 2, line 14
# self._logger_manager.log_message(
# f"Before line 14, parameters norm = {FedOptServer.get_norm(self.get_detached_model_parameters())}"
# )
if self.v_parameters is None:
for sp, dp in zip(self.model.parameters(), self.delta_parameters):
sp.data.add_(dp.data, alpha=self.config.lr)
else:
for sp, dp, vp in zip(self.model.parameters(), self.delta_parameters, self.v_parameters):
sp.data.addcdiv_(
dp.data,
vp.sqrt() + self.config.tau,
value=self.config.lr,
)
# self._logger_manager.log_message(
# f"After line 14, parameters norm = {FedOptServer.get_norm(self.get_detached_model_parameters())}"
# )
def update_avg(self) -> None:
"""Additional operation for FedAvg."""
# do nothing
# FedAvg does not use delta_parameters nor v_parameters
pass
def update_adagrad(self) -> None:
"""Additional operation for FedAdagrad."""
for vp, dp in zip(self.v_parameters, self.delta_parameters):
vp.data.add_(dp.data.pow(2))
def update_yogi(self) -> None:
"""Additional operation for FedYogi."""
for vp, dp in zip(self.v_parameters, self.delta_parameters):
vp.data.addcmul_(
dp.data.pow(2),
(vp.data - dp.data.pow(2)).sign(),
value=-(1 - self.config.betas[1]),
)
def update_adam(self) -> None:
"""Additional operation for FedAdam."""
for vp, dp in zip(self.v_parameters, self.delta_parameters):
vp.data.mul_(self.config.betas[1]).add_(dp.data.pow(2), alpha=1 - self.config.betas[1])
@property
def config_cls(self) -> Dict[str, type]:
return {
"server": FedOptServerConfig,
"client": FedOptClientConfig,
}
@property
def doi(self) -> List[str]:
return ["10.48550/ARXIV.2003.00295"]
@register_algorithm()
@add_docstring(
Client.__doc__.replace(
"The class to simulate the client node.",
"Client node for the FedOpt algorithm.",
).replace("ClientConfig", "FedOptClientConfig")
)
class FedOptClient(Client):
"""Client node for the FedOpt algorithm."""
__name__ = "FedOptClient"
@property
def required_config_fields(self) -> List[str]:
return ["optimizer"]
def communicate(self, target: "FedOptServer") -> None:
delta_parameters = self.get_detached_model_parameters()
for dp, rp in zip(delta_parameters, self._cached_parameters):
dp.data.add_(rp.data, alpha=-1)
target._received_messages.append(
ClientMessage(
**{
"client_id": self.client_id,
"delta_parameters": delta_parameters,
"train_samples": len(self.train_loader.dataset),
"metrics": self._metrics,
}
)
)
def update(self) -> None:
try:
self.set_parameters(self._received_messages["parameters"])
self._cached_parameters = deepcopy(self._received_messages["parameters"])
except KeyError:
warnings.warn(
"No parameters received from server. " "Using current model parameters as initial parameters.",
RuntimeWarning,
)
self._cached_parameters = self.get_detached_model_parameters()
except Exception as err:
raise err
self._cached_parameters = [p.to(self.device) for p in self._cached_parameters]
self.solve_inner() # alias of self.train()
def train(self) -> None:
self.model.train()
with tqdm(
range(self.config.num_epochs),
total=self.config.num_epochs,
mininterval=1.0,
disable=self.config.verbose < 2,
leave=False,
) as pbar:
for epoch in pbar: # local update
self.model.train()
for X, y in self.train_loader:
X, y = X.to(self.device), y.to(self.device)
self.optimizer.zero_grad()
output = self.model(X)
loss = self.criterion(output, y)
loss.backward()
self.optimizer.step()
# free memory
# del X, y, output, loss
self.lr_scheduler.step()
@register_algorithm()
@add_docstring(
remove_parameters_returns_from_docstring(FedOptServerConfig.__doc__, parameters=["optimizer", "lr", "betas", "tau"])
)
class FedAvgServerConfig(FedOptServerConfig):
""" """
__name__ = "FedAvgServerConfig"
def __init__(
self,
num_iters: int,
num_clients: int,
clients_sample_ratio: float,
**kwargs: Any,
) -> None:
if kwargs.pop("lr", None) is not None:
warnings.warn(
"`lr` is fixed to `1` for FedAvgServerConfig and will be ignored.",
RuntimeWarning,
)
if kwargs.pop("betas", None) is not None:
warnings.warn(
"`betas` is fixed to `(0, 1)` for FedAvgServerConfig and will be ignored.",
RuntimeWarning,
)
if kwargs.pop("tau", None) is not None:
warnings.warn(
"`tau` is not used for FedAvgServerConfig and will be ignored.",
RuntimeWarning,
)
super().__init__(
num_iters,
num_clients,
clients_sample_ratio,
optimizer="Avg",
lr=1,
betas=(0, 1), # betas[1] can be set arbitrarily since it is not used
tau=1, # tau can be set arbitrarily since it is not used
**kwargs,
)
self.algorithm = "FedAvg"
@register_algorithm()
@add_docstring(FedOptClientConfig.__doc__.replace("FedOpt", "FedAvg"))
class FedAvgClientConfig(FedOptClientConfig):
""" """
__name__ = "FedAvgClientConfig"
def __init__(
self,
batch_size: int,
num_epochs: int,
lr: float = 1e-2,
optimizer: str = "SGD",
**kwargs: Any,
) -> None:
super().__init__(
batch_size=batch_size,
num_epochs=num_epochs,
lr=lr,
optimizer=optimizer,
**kwargs,
)
self.algorithm = "FedAvg"
@register_algorithm()
@add_docstring(FedOptServer.__doc__.replace("FedOpt", "FedAvg"))
class FedAvgServer(FedOptServer):
"""Server node for the FedAvg algorithm."""
__name__ = "FedAvgServer"
@property
def client_cls(self) -> type:
return FedAvgClient
@property
def config_cls(self) -> Dict[str, type]:
return {
"server": FedAvgServerConfig,
"client": FedAvgClientConfig,
}
@property
def required_config_fields(self) -> List[str]:
return []
@register_algorithm()
@add_docstring(FedOptClient.__doc__.replace("FedOpt", "FedAvg"))
class FedAvgClient(FedOptClient):
""" """
__name__ = "FedAvgClient"
@register_algorithm()
@add_docstring(remove_parameters_returns_from_docstring(FedOptServerConfig.__doc__, parameters=["optimizer"]))
class FedAdagradServerConfig(FedOptServerConfig):
""" """
__name__ = "FedAdagradServerConfig"
def __init__(
self,
num_iters: int,
num_clients: int,
clients_sample_ratio: float,
lr: float = 1e-2,
betas: Sequence[float] = (0.0, 0.99),
tau: float = 1e-5,
**kwargs: Any,
) -> None:
super().__init__(
num_iters,
num_clients,
clients_sample_ratio,
optimizer="Adagrad",
lr=lr,
betas=betas,
tau=tau,
**kwargs,
)
self.algorithm = "FedAdagrad"
@register_algorithm()
@add_docstring(FedOptClientConfig.__doc__.replace("FedOpt", "FedAdagrad"))
class FedAdagradClientConfig(FedOptClientConfig):
""" """
__name__ = "FedAdagradClientConfig"
def __init__(
self,
batch_size: int,
num_epochs: int,
lr: float = 1e-2,
optimizer: str = "SGD",
**kwargs: Any,
) -> None:
super().__init__(
batch_size=batch_size,
num_epochs=num_epochs,
lr=lr,
optimizer=optimizer,
**kwargs,
)
self.algorithm = "FedAdagrad"
@register_algorithm()
@add_docstring(FedOptServer.__doc__.replace("FedOpt", "FedAdagrad"))
class FedAdagradServer(FedOptServer):
""" """
__name__ = "FedAdagradServer"
@property
def client_cls(self) -> type:
return FedAdagradClient
@property
def config_cls(self) -> Dict[str, type]:
return {
"server": FedAdagradServerConfig,
"client": FedAdagradClientConfig,
}
@property
def required_config_fields(self) -> List[str]:
return [k for k in super().required_config_fields if k != "optimizer"]
@register_algorithm()
@add_docstring(FedOptClient.__doc__.replace("FedOpt", "FedAdagrad"))
class FedAdagradClient(FedOptClient):
""" """
__name__ = "FedAdagradClient"
@register_algorithm()
@add_docstring(remove_parameters_returns_from_docstring(FedOptServerConfig.__doc__, parameters=["optimizer"]))
class FedYogiServerConfig(FedOptServerConfig):
""" """
__name__ = "FedYogiServerConfig"
def __init__(
self,
num_iters: int,
num_clients: int,
clients_sample_ratio: float,
lr: float = 1e-2,
betas: Sequence[float] = (0.9, 0.99),
tau: float = 1e-5,
**kwargs: Any,
) -> None:
super().__init__(
num_iters,
num_clients,
clients_sample_ratio,
optimizer="Yogi",
lr=lr,
betas=betas,
tau=tau,
**kwargs,
)
self.algorithm = "FedYogi"
@register_algorithm()
@add_docstring(FedOptClientConfig.__doc__.replace("FedOpt", "FedYogi"))
class FedYogiClientConfig(FedOptClientConfig):
""" """
__name__ = "FedYogiClientConfig"
def __init__(
self,
batch_size: int,
num_epochs: int,
lr: float = 1e-2,
optimizer: str = "SGD",
**kwargs: Any,
) -> None:
super().__init__(
batch_size=batch_size,
num_epochs=num_epochs,
lr=lr,
optimizer=optimizer,
**kwargs,
)
self.algorithm = "FedYogi"
@register_algorithm()
@add_docstring(FedOptServer.__doc__.replace("FedOpt", "FedYogi"))
class FedYogiServer(FedOptServer):
""" """
__name__ = "FedYogiServer"
@property
def client_cls(self) -> type:
return FedYogiClient
@property
def config_cls(self) -> Dict[str, type]:
return {
"server": FedYogiServerConfig,
"client": FedYogiClientConfig,
}
@property
def required_config_fields(self) -> List[str]:
return [k for k in super().required_config_fields if k != "optimizer"]
@register_algorithm()
@add_docstring(FedOptClient.__doc__.replace("FedOpt", "FedYogi"))
class FedYogiClient(FedOptClient):
""" """
__name__ = "FedYogiClient"
@register_algorithm()
@add_docstring(remove_parameters_returns_from_docstring(FedOptServerConfig.__doc__, parameters=["optimizer"]))
class FedAdamServerConfig(FedOptServerConfig):
""" """
__name__ = "FedAdamServerConfig"
def __init__(
self,
num_iters: int,
num_clients: int,
clients_sample_ratio: float,
lr: float = 1e-2,
betas: Sequence[float] = (0.9, 0.99),
tau: float = 1e-5,
**kwargs: Any,
) -> None:
super().__init__(
num_iters,
num_clients,
clients_sample_ratio,
optimizer="Adam",
lr=lr,
betas=betas,
tau=tau,
**kwargs,
)
self.algorithm = "FedAdam"
@register_algorithm()
@add_docstring(FedOptClientConfig.__doc__.replace("FedOpt", "FedAdam"))
class FedAdamClientConfig(FedOptClientConfig):
""" """
__name__ = "FedAdamClientConfig"
def __init__(
self,
batch_size: int,
num_epochs: int,
lr: float = 1e-2,
optimizer: str = "SGD",
**kwargs: Any,
) -> None:
super().__init__(
batch_size=batch_size,
num_epochs=num_epochs,
lr=lr,
optimizer=optimizer,
**kwargs,
)
self.algorithm = "FedAdam"
@register_algorithm()
@add_docstring(FedOptServer.__doc__.replace("FedOpt", "FedAdam"))
class FedAdamServer(FedOptServer):
""" """
__name__ = "FedAdamServer"
@property
def client_cls(self) -> type:
return FedAdamClient
@property
def config_cls(self) -> Dict[str, type]:
return {
"server": FedAdamServerConfig,
"client": FedAdamClientConfig,
}
@property
def required_config_fields(self) -> List[str]:
return [k for k in super().required_config_fields if k != "optimizer"]
@register_algorithm()
@add_docstring(FedOptClient.__doc__.replace("FedOpt", "FedAdam"))
class FedAdamClient(FedOptClient):
""" """
__name__ = "FedAdamClient"