forked from nanovna-v2/NanoVNA2-firmware
-
Notifications
You must be signed in to change notification settings - Fork 1
/
lc_matching.c
255 lines (222 loc) · 7.38 KB
/
lc_matching.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
* (c) Yury Kuchura
* kuchura@gmail.com
*
* This code can be used on terms of WTFPL Version 2 (http://www.wtfpl.net/).
*
* Heavily messed about with by OneOfEleven July 2020
* DiSlord adaptation to use on NanoVNA
*/
// calculate physical component values to match an impendace to 'ref_impedance' (ie 50R)
#ifdef __USE_LC_MATCHING__
typedef struct
{
float xps; // Reactance parallel to source (can be NAN if not applicable)
float xs; // Serial reactance (can be 0.0 if not applicable)
float xpl; // Reactance parallel to load (can be NAN if not applicable)
} t_lc_match;
typedef struct
{
uint32_t Hz;
float R0;
// L-Network solution structure
t_lc_match matches[4];
int16_t num_matches;
uint16_t sweep_n;
} t_lc_match_array;
static t_lc_match_array lc_match_array;
static void lc_match_quadratic_equation(float a, float b, float c, float *x)
{
const float d = (b * b) - (4.0f * a * c);
if (d < 0){
x[0] = x[1] = 0.0f;
return;
}
const float sd = sqrtf(d);
const float a2 = 2.0f * a;
x[0] = (-b + sd) / a2;
x[1] = (-b - sd) / a2;
}
// Calculate two solutions for ZL where (R + X * X / R) > R0
static void lc_match_calc_hi(float R0, float RL, float XL, t_lc_match *matches)
{
float xp[2];
const float a = R0 - RL;
const float b = 2.0f * XL * R0;
const float c = R0 * ((XL * XL) + (RL * RL));
lc_match_quadratic_equation(a, b, c, xp);
// found two impedances parallel to load
//
// now calculate serial impedances
const float RL1 = -XL * xp[0];
const float XL1 = RL * xp[0];
const float RL2 = RL + 0.0f;
const float XL2 = XL + xp[0];
matches[0].xs = ((RL1 * XL2) - (RL2 * XL1)) / ((RL2 * RL2) + (XL2 * XL2));
matches[0].xps = 0.0f;
matches[0].xpl = xp[0];
const float RL3 = -XL * xp[1];
const float XL3 = RL * xp[1];
const float RL4 = RL + 0.0f;
const float XL4 = XL + xp[1];
matches[1].xs = ((RL3 * XL4) - (RL4 * XL3)) / ((RL4 * RL4) + (XL4 * XL4));
matches[1].xps = 0.0f;
matches[1].xpl = xp[1];
}
// Calculate two solutions for ZL where R < R0
static void lc_match_calc_lo(float R0, float RL, float XL, t_lc_match *matches)
{
float xs[2];
// Calculate Xs
const float a = 1.0f;
const float b = 2.0f * XL;
const float c = (RL * RL) + (XL * XL) - (R0 * RL);
lc_match_quadratic_equation(a, b, c, xs);
// got two serial impedances that change ZL to the Y.real = 1/R0
//
// now calculate impedances parallel to source
const float RL1 = RL + 0.0f;
const float XL1 = XL + xs[0];
const float RL3 = RL1 * R0;
const float XL3 = XL1 * R0;
const float RL5 = RL1 - R0;
const float XL5 = XL1 - 0.0f;
matches[0].xs = xs[0];
matches[0].xps = ((RL5 * XL3) - (RL3 * XL5)) / ((RL5 * RL5) + (XL5 * XL5));
matches[0].xpl = 0.0f;
const float RL2 = RL + 0.0f;
const float XL2 = XL + xs[1];
const float RL4 = RL2 * R0;
const float XL4 = XL2 * R0;
const float RL6 = RL2 - R0;
const float XL6 = XL2 - 0.0f;
matches[1].xs = xs[1];
matches[1].xps = ((RL6 * XL4) - (RL4 * XL6)) / ((RL6 * RL6) + (XL6 * XL6));
matches[1].xpl = 0.0f;
}
static int lc_match_calc(int index)
{
const float R0 = lc_match_array.R0;
// compute the impedance at the chosen frequency
const complexf coeff = measured[0][index];
const float RL = resistance(coeff);
const float XL = reactance(coeff);
if (RL <= 0.5f)
return -1;
const float q_factor = XL / RL;
const float vswr = swr(coeff);
// no need for any matching
if (vswr <= 1.1f || q_factor >= 100.0f)
return 0;
// only one solution is enough: just a serial reactance
// this gives SWR < 1.1 if R is within the range 0.91 .. 1.1 of R0
t_lc_match *matches = lc_match_array.matches;
if ((RL * 1.1f) > R0 && RL < (R0 * 1.1f)){
matches[0].xpl = 0.0f;
matches[0].xps = 0.0f;
matches[0].xs = -XL;
return 1;
}
if (RL >= R0)
{ // two Hi-Z solutions
lc_match_calc_hi(R0, RL, XL, &matches[0]);
return 2;
}
// compute Lo-Z solutions
lc_match_calc_lo(R0, RL, XL, &matches[0]);
if ((RL + (XL * q_factor)) <= R0)
return 2;
// two more Hi-Z solutions exist
lc_match_calc_hi(R0, RL, XL, &matches[2]);
return 4;
}
// Mark to redraw area under L/C match text
static void lc_match_mark_area(void){
// Update area
int n = lc_match_array.num_matches; if (n < 0) n = 0;
invalidate_rect(STR_LC_MATH_X , STR_LC_MATH_Y,
STR_LC_MATH_X + 3 * STR_LC_MATH_WIDTH, STR_LC_MATH_Y + (n + 2)*STR_LC_MATH_HEIGHT);
}
static void lc_match_process(void)
{
const uint32_t am = (uint32_t)active_marker;
if (am >=MARKERS_MAX || current_props._markers[am].enabled == false)
return;
const uint32_t index = current_props._markers[am].index;
if (index >= (uint32_t)sweep_points)
return;
const freqHz_t curr_freq = freqAt(index);
// Made calculation only one time for current sweep and frequency
if (lc_match_array.sweep_n == sweep_count && lc_match_array.Hz == curr_freq)
return;
lc_match_array.R0 = 50.0f;
lc_match_array.Hz = curr_freq;
lc_match_array.sweep_n = sweep_count;
// compute the possible LC matches
lc_match_array.num_matches = lc_match_calc(index);
lc_match_mark_area();
}
//
static void lc_match_x_str(uint32_t FHz, float X, int xp, int yp)
{
if (isnan(X) || 0.0f == X || -0.0f == X)
return;
char type;
char str[12];
#if 0
float val;
if (X < 0.0f) {val = 1.0f / (2.0f * M_PI * FHz * -X); type = 'F';}
else {val = X / (2.0f * M_PI * FHz); type = 'H';}
#else
if (X < 0.0f) {X = -1.0 / X; type = 'F';}
else { type = 'H';}
float val = X / (2.0f * M_PI * FHz);
#endif
// chsnprintf(str, sizeof(str), "%4.2F%c", val, type);
string_value_with_prefix(str, sizeof(str), val, type);
cell_drawstring(str, xp, yp);
}
// Render L/C match to cell
static void cell_draw_lc_match(int x0, int y0)
{
char s[32];
lc_match_process();
int xp = STR_LC_MATH_X - x0;
int yp = STR_LC_MATH_Y - y0;
ili9341_set_background(DEFAULT_BG_COLOR);
ili9341_set_foreground(DEFAULT_LC_MATCH_COLOR);
if (yp > -FONT_GET_HEIGHT && yp < CELLHEIGHT)
{
chsnprintf(s, sizeof(s), "L/C match for source Z0 = %0.1f" S_OHM, lc_match_array.R0);
cell_drawstring(s, xp, yp);
}
#if 0
yp += STR_LC_MATH_HEIGHT;
if (yp > -FONT_GET_HEIGHT && yp < CELLHEIGHT)
{
chsnprintf(s, sizeof(s), "%qHz %0.1f %c j%0.1f"S_OHM, match_array->Hz, match_array->RL, (match_array->XL >= 0) ? '+' : '-', fabsf(match_array->XL));
cell_drawstring(s, xp, yp);
}
#endif
yp += STR_LC_MATH_HEIGHT;
if (yp >= CELLHEIGHT) return;
if (lc_match_array.num_matches < 0)
cell_drawstring((char *)"No LC match for this", xp, yp);
else if (lc_match_array.num_matches == 0)
cell_drawstring((char *)"No need for LC match", xp, yp);
else {
cell_drawstring((char *)"Src shunt" , xp , yp);
cell_drawstring((char *)"Series" , xp + STR_LC_MATH_WIDTH, yp);
cell_drawstring((char *)"Load shunt", xp + 2*STR_LC_MATH_WIDTH, yp);
for (int i = 0; i < lc_match_array.num_matches; i++){
yp += STR_LC_MATH_HEIGHT;
if (yp >= CELLHEIGHT) return;
if (yp > -FONT_GET_HEIGHT){
lc_match_x_str(lc_match_array.Hz, lc_match_array.matches[i].xps, xp , yp);
lc_match_x_str(lc_match_array.Hz, lc_match_array.matches[i].xs , xp + STR_LC_MATH_WIDTH, yp);
lc_match_x_str(lc_match_array.Hz, lc_match_array.matches[i].xpl, xp + 2*STR_LC_MATH_WIDTH, yp);
}
}
}
}
#endif