-
Notifications
You must be signed in to change notification settings - Fork 1
/
adult_mouse_full_analysis.Rmd
executable file
·994 lines (788 loc) · 47.8 KB
/
adult_mouse_full_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
---
title: "Adult mouse (AM) single-cell mRNA-tRNA analysis"
output: pdf_document
---
Runtime (excluding parts indicated as optional): 5 minutes on 8 GB RAM macOS Catalina version 10.15.17
Description:
This R notebook runs the analysis of scRNA-seq and scATAC-seq datasets from the adult mouse (AM) atlases. This script uses already processed data -- data from individual cells has been pooled to the cell type level (per the annotations provided by the atlases).
This script does the following:
(1) Analysis of mRNA gene expression across cell types
(2) Analysis of codon usage across cell types
(3) Analysis of AA demand across cell types
(4) Analysis of cell type outliers in codon usage / AA demand
(5) Analysis of tRNA gene "expression" (accessibility) across cell types
(6) Analysis of anticodon usage across cell types
(7) Analysis of AA supply across cell types
(8) Translation efficiency analysis
# Load libraries
```{r}
library(Biostrings)
library(ggplot2)
library(dendsort)
library(DESeq2)
library(ggrepel)
library(pheatmap)
library(tidyverse)
library(viridis)
'%notin%' <- Negate('%in%')
# used to rearrange dendrogram in heatmap: https://slowkow.com/notes/pheatmap-tutorial/
sort_hclust <- function(...) as.hclust(dendsort(as.dendrogram(...)))
```
# Load general variables
```{r}
# directory of current script
script_directory <- dirname(rstudioapi::getSourceEditorContext()$path)
# directory where the processed data used in this script lies (it should be in a subdirectory called "processed_data" relative to this R script)
processed_data_directory <- paste0(script_directory, "/processed_data/")
# 61 sense codons for 20 classical AAs
sense_codons <- c("AAA", "AAC", "AAG", "AAT", "ACA", "ACC", "ACG", "ACT", "AGA","AGC","AGG","AGT","ATA","ATC","ATG","ATT", "CAA", "CAC", "CAG", "CAT", "CCA", "CCC", "CCG", "CCT", "CGA", "CGC", "CGG", "CGT", "CTA", "CTC", "CTG", "CTT", "GAA", "GAC", "GAG", "GAT", "GCA", "GCC", "GCG", "GCT", "GGA", "GGC", "GGG", "GGT", "GTA", "GTC", "GTG", "GTT", "TAC", "TAT", "TCA", "TCC", "TCG", "TCT", "TGC", "TGG", "TGT", "TTA", "TTC", "TTG", "TTT")
# 20 classical AAs: one letter code
amino_acids <- c("A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "V", "W", "Y")
# 20 classcial AAs: three letter code
three_letter_amino_acids <- c("Ala", "Cys", "Asp", "Glu", "Phe", "Gly", "His", "Ile", "Lys", "Leu", "Met", "Asn", "Pro", "Gln", "Arg", "Ser", "Thr", "Val", "Trp", "Tyr")
```
# Load functions
## PCA function
```{r}
PCA_generator <- function(feature_by_cell_type_matrix) {
# take transpose of feature by cell matrix, which will be input for PCA
cell_type_by_feature_matrix <- t(feature_by_cell_type_matrix)
# remove features with too low variances, if any
too_low_variance_features <- which(colVars(cell_type_by_feature_matrix) < 1E-5)
if (length(too_low_variance_features) > 1) {
cell_type_by_feature_matrix <- cell_type_by_feature_matrix[ , -c(too_low_variance_features)]
}
# run PCA
PCA_res <- prcomp(cell_type_by_feature_matrix, scale = TRUE, center = TRUE)
# 1. Produce elbow plot and examine amount of variance explained
PC_variance_explained = 100 * (PCA_res$sdev ^ 2) / sum(PCA_res$sdev ^ 2)
elbow_tibble <- tibble(
PC = 1:length(PCA_res$sdev),
variance_explained = PC_variance_explained
)
elbow_plot <- ggplot(data = elbow_tibble) +
theme_classic() +
geom_bar(mapping = aes(x = reorder(PC, -variance_explained), y = variance_explained), stat = "identity") +
labs(title = "Percentage of variance explained per PC", x = "PC", y = "% variance explained") +
theme(axis.text.x = element_text(angle = 90))
# 2. Produce PCA plot
PCA_plot_tibble <- tibble(
tissue_type = sub("-.*", "", rownames(PCA_res$x)),
cell_type = rownames(PCA_res$x),
PC_1 = PCA_res$x[, 1],
PC_2 = PCA_res$x[, 2]
)
PCA_plot_tibble$tissue_type <- factor(PCA_plot_tibble$tissue_type)
# use custom color theme for tissues
color_theme <- read.table(paste0(processed_data_directory, "Manuscript_color_palette.txt"), sep = "\t", header = 1, row.names = 1)
corresponding_colors_for_tissues <- color_theme[levels(PCA_plot_tibble$tissue_type), "color"]
# 3. PCA plot without labels
PCA_plot_without_labels <- ggplot(data = PCA_plot_tibble, mapping = aes(x = PC_1, y = PC_2, label = cell_type, color = tissue_type)) +
theme_classic() +
geom_point() +
scale_color_manual(values = corresponding_colors_for_tissues) +
labs(x = sprintf("PC1 (%.1f%%)", PC_variance_explained[1]), y = sprintf("PC2 (%.1f%%)", PC_variance_explained[2]))
# PCA plot with labels (there are too many points so some labels cannot be displayed, but the
# outlier labels will be present)
PCA_plot_with_labels <- PCA_plot_without_labels + geom_text_repel(size = 4)
# output: a list with (1) elbow plot (2) PCA plot with labels (3) PCA plot without labels
return(list(elbow_plot, PCA_plot_without_labels, PCA_plot_with_labels))
}
```
# DESEq2 analysis function
```{r}
# input should be a count matrix with rows corresponding to the features (genes, codons, etc.) and the columns corresponding to the cell type labels
DESeq2_runner <- function(input_count_matrix) {
# columns of input matrix are the cell type labels
cell_type_labels <- colnames(input_count_matrix)
# metadata for DESeq analysis
colData <- tibble(
cell_type = cell_type_labels,
tissue = sub("-.*", "", cell_type_labels)
)
# run DESeq2
DESeq2_run <- DESeqDataSetFromMatrix(
countData = input_count_matrix,
colData = colData,
design = ~ tissue
)
DESeq2_run <- DESeq(DESeq2_run)
# perform variance stabilizing transformation and calculate Euclidean distances
vst <- varianceStabilizingTransformation(DESeq2_run)
Euc_Dists <- dist(t(assay(vst)))
vst_matrix <- as.matrix(assay(vst))
# sort nodes in hierarchical clustering
mat_cluster_names <- sort_hclust(hclust(Euc_Dists))
# produce heatmap that has been hierarchically clustered
Dist_heatmap <- pheatmap(Euc_Dists, cluster_cols = mat_cluster_names, cluster_rows = mat_cluster_names, color = inferno(1000), border_color = NA, labels_col = mat_cluster_names$labels, labels_row = mat_cluster_names$labels, fontsize_row = 5, fontsize_col = 5)
# run heatmap on variance stabilized count matrix
PCA_results <- PCA_generator(vst_matrix)
# output count matrix that has been corrected with size factors to account for sequencing depth
size_corrected_output_matrix <- counts(DESeq2_run, normalized = TRUE)
# output: (1) Euclidean distance heatmap, (2) PCA results, (3) size corrected count matrix
return(list(Dist_heatmap, PCA_results, size_corrected_output_matrix))
}
```
# Neuron vs. other cell types differential analysis
```{r}
# input should be a count matrix with rows corresponding to the features (genes, codons, etc.) and the columns corresponding to the cell type labels
neuron_DESeq2_runner <- function(input_count_matrix, fc_threshold, p_val_threshold) {
# columns of input matrix are the cell type labels
cell_type_labels <- colnames(input_count_matrix)
# metadata for DESeq analysis
colData <- tibble(
cell_type = cell_type_labels,
tissue = sub("-.*", "", cell_type_labels)
)
# classify as neuronal vs. other
colData$class <- "other"
colData$class[grep("neuron", colData$cell_type)] <- "neuron"
colData$class[grep("granule", colData$cell_type)] <- "neuron" # cerebellar granule cells are neurons
neuron_DESeq2 <- DESeqDataSetFromMatrix(
countData = input_count_matrix,
colData = colData,
design = ~ class
)
# run differential analysis
neuron_DESeq2 <- DESeq(neuron_DESeq2)
# summarize results: fold change is neuron vs. other
neuron_DESeq2_results <- as.data.frame(results(neuron_DESeq2, contrast=c("class", "neuron", "other")))
# summarize results in tibble (for visualizing in volcano plot)
neuron_results_tibble <- tibble(
feature = rownames(input_count_matrix),
log2_FC = neuron_DESeq2_results$log2FoldChange,
neg_log10_adjusted_p_value = -log10(neuron_DESeq2_results$padj),
)
# plot volcano plot
volcano_plot <- ggplot() +
theme_classic() +
geom_point(data = neuron_results_tibble,
mapping = aes(x = log2_FC, y = neg_log10_adjusted_p_value), color = "black", alpha = 0.5) +
geom_point(data = dplyr::filter(neuron_results_tibble, abs(log2_FC) > fc_threshold, neg_log10_adjusted_p_value > -log10(p_val_threshold)), mapping = aes(x = log2_FC, y = neg_log10_adjusted_p_value), size = 3) +
geom_text_repel(data = dplyr::filter(neuron_results_tibble, abs(log2_FC) > fc_threshold, neg_log10_adjusted_p_value > -log10(p_val_threshold)), mapping = aes(x = log2_FC, y = neg_log10_adjusted_p_value, label = feature), size = 2) +
geom_abline(slope = 0, intercept = -log10(p_val_threshold), linetype = "dotted") +
geom_vline(xintercept = -1 * fc_threshold, linetype = "dotted") +
geom_vline(xintercept = fc_threshold, linetype = "dotted") +
labs(x = expression(log[2]~fold~change), y = expression(-log[10]~adjusted~p~value), title = "brain neurons vs. other cell types") +
theme(plot.title = element_text(hjust = 0.5, size = 20))
# output: (1) neuron DESeq2 results in tibble format, (2) volcano plot
return(list(neuron_results_tibble, volcano_plot))
}
```
### Part 1: Gene expression analysis (scRNA-seq) ###
```{r}
# load dataset
mRNA_gene_expression_per_cell_type <- readRDS(paste0(processed_data_directory, "AM_scRNA_count_matrix.rds"))
scRNA_seq_cell_types <- colnames(mRNA_gene_expression_per_cell_type)
# Note: This next line takes about 20 minutes to run. To avoid this, load the R object below instead
# mRNA_gene_expression_DESeq2_results <- DESeq2_runner(mRNA_gene_expression_per_cell_type)
#saveRDS(mRNA_gene_expression_DESeq2_results, paste0(processed_data_directory, "AM_mRNA_gene_expression_DESeq2_results.rds"))
mRNA_gene_expression_DESeq2_results <- readRDS(paste0(processed_data_directory, "AM_mRNA_gene_expression_DESeq2_results.rds"))
size_corrected_mRNA_gene_expression_per_cell_type <- mRNA_gene_expression_DESeq2_results[[3]]
```
### Part 2: Codon usage analysis (scRNA-seq) ###
# Matrix multiply [codon frequency per gene] matrix by [gene expression per cell type] matrix to generate [codon usage per cell type] matrix
```{r}
# Load codon frequency per mRNA gene matrix
codon_frequency_per_gene_table <- readRDS(paste0(processed_data_directory, "mouse_codon_usage_table.rds"))
# perform analysis for only genes in common between RNA-seq count matrix and codon frequency per mRNA gene matrix
mRNAs_in_common <- intersect(colnames(codon_frequency_per_gene_table), rownames(mRNA_gene_expression_per_cell_type))
filtered_mRNA_gene_expression_per_cell_type <- as.matrix(mRNA_gene_expression_per_cell_type[mRNAs_in_common, ])
codon_frequency_per_gene_table <- codon_frequency_per_gene_table[ , mRNAs_in_common]
codon_usage_per_cell_type <- codon_frequency_per_gene_table %*% filtered_mRNA_gene_expression_per_cell_type
# largest integers allowed in R is 2147483648, so divide all values by 100 (max value is 21 times larger than limit)
codon_usage_per_cell_type <- codon_usage_per_cell_type / 100
codon_usage_per_cell_type <- round(codon_usage_per_cell_type)
```
# Run DESeq2 analysis
```{r fig.height = 10, fig.width = 10}
codon_usage_DESeq2_results <- DESeq2_runner(codon_usage_per_cell_type)
# Euclidean distance heatmap
print(codon_usage_DESeq2_results[[1]])
# PCA results
print(codon_usage_DESeq2_results[[2]][2])
print(codon_usage_DESeq2_results[[2]][3])
# size corrected count matrix
size_corrected_codon_usage_per_cell_type <- codon_usage_DESeq2_results[[3]]
```
### Part 3: AA demand analysis (scRNA-seq) ###
# Pool codons to calculate AA demand from mRNAs
```{r}
unique_scRNA_seq_cell_types <- colnames(codon_usage_per_cell_type)
AAs_for_codons <- as.vector(translate(DNAStringSet(sense_codons), no.init.codon = TRUE))
AA_demand_per_cell_type <- matrix(data = 0, nrow = length(amino_acids), ncol = length(unique_scRNA_seq_cell_types))
dimnames(AA_demand_per_cell_type) <- list(amino_acids, unique_scRNA_seq_cell_types)
for (i in 1:length(amino_acids)) {
AA_demand_per_cell_type[i, ] <- colSums(codon_usage_per_cell_type[which(AAs_for_codons == amino_acids[i]), , drop = FALSE])
}
```
# Run DESeq2 analysis
```{r fig.height = 10, fig.width = 10}
AA_demand_DESeq2_results <- DESeq2_runner(AA_demand_per_cell_type)
# Euclidean distance heatmap
print(AA_demand_DESeq2_results[[1]])
# PCA results
print(AA_demand_DESeq2_results[[2]][2])
print(AA_demand_DESeq2_results[[2]][3])
# size corrected count matrix
size_corrected_AA_demand_per_cell_type <- AA_demand_DESeq2_results[[3]]
```
# Part 4: Examination of codon usage / AA supply outliers
# Create tibble to visualize codon usage and AA demand (normalized as frequencies over total)
```{r}
# created tibble with normalized codon usages (frequencies)
normalized_codon_usage_per_cell_type <- sweep(size_corrected_codon_usage_per_cell_type, 2, colSums(size_corrected_codon_usage_per_cell_type), FUN="/") %>%
as.data.frame() %>%
rownames_to_column(var = "codon") %>%
pivot_longer(., c(-"codon"), names_to = "cell_type", values_to = "usage")
# created tibble with normalized AA demand (frequencies)
normalized_AA_demand_per_cell_type <- sweep(size_corrected_AA_demand_per_cell_type, 2, colSums(size_corrected_AA_demand_per_cell_type), FUN="/") %>%
as.data.frame() %>%
rownames_to_column(var = "AA") %>%
pivot_longer(., c(-"AA"), names_to = "cell_type", values_to = "usage")
ggplot(data = normalized_codon_usage_per_cell_type, mapping = aes(x = codon, y = usage)) +
theme_classic() +
geom_jitter() +
labs(title = "Codon usage across cell types", x = "codon", y = "proportion of total codon usage", color="cell type") +
theme(axis.text.x = element_text(angle = 90),
legend.position = "none",
plot.title = element_text(hjust = 0.5, size = 20))
ggplot(data = normalized_AA_demand_per_cell_type, mapping = aes(x = AA, y = usage)) +
theme_classic() +
geom_jitter() +
labs(title = "AA demand across cell types", x = "AA", y = "proportion of total AA demand", color="cell type") +
theme(axis.text.x = element_text(angle = 90),
legend.position = "none",
plot.title = element_text(hjust = 0.5, size = 20))
```
# Calculate mean codon usage across all cell types and compare this to the exonic background
```{r}
# mean codon usage across cell types
codon_usage_across_cell_types <- group_by(normalized_codon_usage_per_cell_type, codon) %>%
summarise(mean_codon_usage_across_cell_types = mean(usage))
# exonic background: determine codon frequencies across all CDSes
codon_exonic_background <- rowSums(codon_frequency_per_gene_table) / sum(rowSums(codon_frequency_per_gene_table))
correlation_to_exonic_background <- round(cor(codon_usage_across_cell_types$mean_codon_usage_across_cell_types, codon_exonic_background, method = "spearman"), 3)
codon_usage_across_cell_types$exonic_background_usage <- codon_exonic_background
ggplot(data = codon_usage_across_cell_types, mapping = aes(x = mean_codon_usage_across_cell_types, y = exonic_background_usage, label = codon)) +
theme_classic() +
geom_point(size= 3) +
geom_abline(slope = 1, intercept = 0) +
xlim(0, 0.05) + ylim(0, 0.05) +
geom_text_repel(max.overlaps = 10) +
labs(title = "Codon frequencies of exonic background \n vs. mean codon usage across cell types", x = "mean codon usage across cell types", y = "codon usage of exonic background") +
annotate("text", x = 0.047, y = 0.001, label = sprintf("rho == %f", correlation_to_exonic_background), parse = TRUE)
```
# Identify outliers: calculate correlation of each cell type's codon usage to the mean codon usage across all cell types
```{r}
# calculate each cell types correlation to mean codon usage across cell types
cell_type_correlations_to_mean_codon_usage <- numeric(length(scRNA_seq_cell_types))
names(cell_type_correlations_to_mean_codon_usage) <- scRNA_seq_cell_types
for (i in 1:length(scRNA_seq_cell_types)) {
# specify cell type
select_cell_type_codon_usage <- dplyr::filter(normalized_codon_usage_per_cell_type, cell_type == scRNA_seq_cell_types[i])$usage
cell_type_correlations_to_mean_codon_usage[i] <- cor(codon_usage_across_cell_types$mean_codon_usage_across_cell_types, select_cell_type_codon_usage, method = "spearman")
}
```
# Calculate each gene's codon pool contribution for each cell type
```{r}
codon_pool_contribution_per_gene_per_cell_type <- size_corrected_mRNA_gene_expression_per_cell_type[mRNAs_in_common, ] * colSums(codon_frequency_per_gene_table[, mRNAs_in_common])
# this is a matrix of p protein-coding genes by n cell types, with the values corresponding to the
# codon pool contribution of each gene (columns sum to 1)
codon_pool_contribution_per_gene_per_cell_type <- sweep(codon_pool_contribution_per_gene_per_cell_type, 2, colSums(codon_pool_contribution_per_gene_per_cell_type), FUN="/")
```
# Examine codon pool contribution of top N genes (aka 'codon pool diversity')
```{r}
N = 10
codon_pool_contribution_of_top_N_genes <- numeric(length(scRNA_seq_cell_types))
top_N_codon_pool_contributors_per_cell_type <- matrix(data = 0, nrow = N, ncol = length(scRNA_seq_cell_types))
for (i in 1:length(scRNA_seq_cell_types)) {
top_N_genes <- sort(codon_pool_contribution_per_gene_per_cell_type[, i], decreasing = TRUE)[1:N]
codon_pool_contribution_of_top_N_genes[i] <- sum(top_N_genes)
top_N_codon_pool_contributors_per_cell_type[, i] <- names(top_N_genes)
}
# Examine correlation between codon pool diversity and correlation to mean codon usage
codon_pool_diversity_v_correlation_to_mean_codon_usage <- tibble(
cell_type = scRNA_seq_cell_types,
codon_diversity = 1 - codon_pool_contribution_of_top_N_genes,
correlation = cell_type_correlations_to_mean_codon_usage
)
correl <- round(cor(codon_pool_diversity_v_correlation_to_mean_codon_usage$codon_diversity,
codon_pool_diversity_v_correlation_to_mean_codon_usage$correlation), 3)
ggplot(data = codon_pool_diversity_v_correlation_to_mean_codon_usage, mapping = aes(x = codon_diversity, y = correlation, label = cell_type)) +
theme_classic() +
geom_point() +
geom_text_repel(max.overlaps = 10, size = 3) +
labs(title = "Cell types' correlation to mean codon usage vs. \n codon pool diversity", x = "codon pool diversity", y = "correlation") +
annotate("text", x = 0.95, y = 0.85, label = sprintf("rho == %f", correl), parse = TRUE)
```
# Calculate correlation with removing top N codon pool contributors
```{r}
# remove expression of top N codon pool contributors (so their codon pool contribution becomes 0)
removed_top_N_genes_size_corrected_mRNA_gene_expression_per_cell_type <- size_corrected_mRNA_gene_expression_per_cell_type[mRNAs_in_common, ]
for (i in 1:length(scRNA_seq_cell_types)) {
select_cell_types_top_N_contributors <- top_N_codon_pool_contributors_per_cell_type[, i]
removed_top_N_genes_size_corrected_mRNA_gene_expression_per_cell_type[select_cell_types_top_N_contributors, ] <- 0
}
# recalculate codon usage of each cell type, with top N codon pool contributor genes removed
removed_top_N_genes_codon_usage_per_cell_type <- codon_frequency_per_gene_table[ , mRNAs_in_common] %*% removed_top_N_genes_size_corrected_mRNA_gene_expression_per_cell_type
removed_top_N_genes_codon_usage_per_cell_type <- sweep(removed_top_N_genes_codon_usage_per_cell_type, 2, colSums(removed_top_N_genes_codon_usage_per_cell_type), "/")
# calculate correlation to mean codon usage across cell types (from the original codon usage across cell types matrix)
removed_top_N_genes_correlation_to_mean_codon_usage <- numeric(length(scRNA_seq_cell_types))
names(removed_top_N_genes_correlation_to_mean_codon_usage) <- scRNA_seq_cell_types
for (i in 1:length(scRNA_seq_cell_types)) {
removed_top_N_genes_correlation_to_mean_codon_usage[i] <- cor(removed_top_N_genes_codon_usage_per_cell_type[, i], codon_usage_across_cell_types$mean_codon_usage_across_cell_types)
}
# Examine correlation between codon pool diversity and correlation to mean codon usage
removed_top_N_codon_pool_diversity_v_correlation_to_mean_codon_usage <- tibble(
cell_type = scRNA_seq_cell_types,
codon_diversity = 1 - codon_pool_contribution_of_top_N_genes,
removed_top_N_correlation = removed_top_N_genes_correlation_to_mean_codon_usage
)
correl <- round(cor(removed_top_N_codon_pool_diversity_v_correlation_to_mean_codon_usage$codon_diversity,
removed_top_N_codon_pool_diversity_v_correlation_to_mean_codon_usage$removed_top_N_correlation), 3)
ggplot(data = removed_top_N_codon_pool_diversity_v_correlation_to_mean_codon_usage, mapping = aes(x = codon_diversity, y = removed_top_N_correlation, label = cell_type)) +
theme_classic() +
geom_point() +
geom_text_repel(max.overlaps = 10, size = 3) +
labs(title = "Cell types' correlation to mean codon usage vs. \n codon pool diversity (top N contributors removed)", x = "codon pool diversity", y = "correlation") +
annotate("text", x = 0.95, y = 0.85, label = sprintf("rho == %f", correl), parse = TRUE)
```
### Part 5: tRNA gene expression analysis (scATAC-seq) ###
# Load mm10 tRNA gene information and already processed tRNA gene expression per cell type matrix
```{r}
# Load tRNA genomic ranges
tRNA_granges <- readRDS(paste0(processed_data_directory, "mm10_tRNA_granges.rds"))
# Load processed tRNA gene usage per cell type matrix
tRNA_gene_expression_per_cell_type <- readRDS(paste0(processed_data_directory, "AM_filtered_tRNA_gene_usage_per_cell_type.rds"))
scATAC_seq_cell_types <- colnames(tRNA_gene_expression_per_cell_type)
```
# Run DESeq2 analysis
```{r fig.height = 10, fig.width = 10}
# DESeq2 analysis
tRNA_gene_expression_DESeq2_results <- DESeq2_runner(tRNA_gene_expression_per_cell_type)
# Euclidean distance heatmap
print(tRNA_gene_expression_DESeq2_results[[1]])
# PCA results
print(tRNA_gene_expression_DESeq2_results[[2]][2])
print(tRNA_gene_expression_DESeq2_results[[2]][3])
# size corrected count matrix
size_corrected_tRNA_expression_per_cell_type <- tRNA_gene_expression_DESeq2_results[[3]]
```
# Neurons vs. other cell types differential analysis
```{r}
# set fold change threshold to 1 for detection of differentially expressed tRNA genes
tRNA_gene_level_log2_fc_threshold <- 1
# set adjusted p-value threshold to 0.05 detection of differentially expressed tRNA genes
p_value_threshold <- 0.05
# run DESeq2
neuron_tRNA_gene_level_DE_res <- neuron_DESeq2_runner(tRNA_gene_expression_per_cell_type, tRNA_gene_level_log2_fc_threshold, p_value_threshold)
print(neuron_tRNA_gene_level_DE_res[[2]] + xlim(-5, 5)) # volcano plot
```
### Part 6: Anticodon usage analysis (scATAC-seq) ###
# Combine tRNA genes at anticodon isoacceptor level
```{r}
# extract anticodons for each tRNA gene
anticodons_for_tRNA_genes <- sapply(strsplit(rownames(tRNA_gene_expression_per_cell_type), "-"), "[[", 3)
unique_anticodons <- sort(unique(anticodons_for_tRNA_genes))
anticodon_usage_per_cell_type <- matrix(data = 0, nrow = length(unique_anticodons), ncol = length(scATAC_seq_cell_types))
dimnames(anticodon_usage_per_cell_type) <- list(unique_anticodons, scATAC_seq_cell_types)
# pool counts from each tRNA gene with a particular anticodon
for (i in 1:length(unique_anticodons)) {
anticodon_usage_per_cell_type[i, ] <- colSums(tRNA_gene_expression_per_cell_type[which(anticodons_for_tRNA_genes == unique_anticodons[i]), , drop = FALSE])
}
```
# Heatmap and PCA
```{r fig.height = 10, fig.width = 10}
anticodon_expression_DESeq2_results <- DESeq2_runner(anticodon_usage_per_cell_type)
print(anticodon_expression_DESeq2_results[[1]])
# PCA results
print(anticodon_expression_DESeq2_results[[2]][2])
print(anticodon_expression_DESeq2_results[[2]][3])
# size corrected count matrix
size_corrected_anticodon_per_cell_type <- anticodon_expression_DESeq2_results[[3]]
```
# Neurons vs. other cell types differential analysis
```{r}
# set fold change threshold to 0.25 for detection of differentially expressed anticodons
anticodon_level_log2_fc_threshold <- log2(1.25)
# run DESeq2
neuron_anticodon_level_DE_res <- neuron_DESeq2_runner(anticodon_usage_per_cell_type, anticodon_level_log2_fc_threshold, p_value_threshold)
print(neuron_anticodon_level_DE_res[[2]] + xlim(-1, 1)) # volcano plot
```
### Part 7: Amino acid supply (AA isotype) analysis (scATAC-seq) ###
```{r}
AA_for_each_anticodon <- as.vector(translate(reverseComplement(DNAStringSet(anticodons_for_tRNA_genes)), no.init.codon = TRUE))
unique_AA_for_anticodons <- unique(AA_for_each_anticodon)
isotype_usage_per_cell_type <- matrix(data = 0, nrow = length(unique_AA_for_anticodons), ncol = length(scATAC_seq_cell_types))
dimnames(isotype_usage_per_cell_type) <- list(unique_AA_for_anticodons, scATAC_seq_cell_types)
for (i in 1:length(unique_AA_for_anticodons)) {
loci_with_AA_isotype_indices <- which(AA_for_each_anticodon == unique_AA_for_anticodons[i])
isotype_usage_per_cell_type[i, ] <- colSums(tRNA_gene_expression_per_cell_type[loci_with_AA_isotype_indices, , drop = FALSE])
}
```
# Heatmap and PCA
```{r fig.height = 10, fig.width = 10}
AA_supply_expression_DESeq2_results <- DESeq2_runner(isotype_usage_per_cell_type)
print(AA_supply_expression_DESeq2_results[[1]])
# PCA results
print(AA_supply_expression_DESeq2_results[[2]][2])
print(AA_supply_expression_DESeq2_results[[2]][3])
# size corrected count matrix
size_corrected_AA_supply_per_cell_type <- AA_supply_expression_DESeq2_results[[3]]
```
# Neuron differential analysis
```{r}
# set fold change threshold to 0.25 for detection of differentially expressed AA isotypes
isotype_level_log2_fc_threshold <- log2(1.25)
# run DESeq2
neuron_isotype_level_DE_res <- neuron_DESeq2_runner(isotype_usage_per_cell_type, isotype_level_log2_fc_threshold, p_value_threshold)
print(neuron_isotype_level_DE_res[[2]] + xlim(-1, 1)) # volcano plot
```
### Part 8: Translation efficiency analysis ###
# Calculate translation efficiency for cell types that are present in both scRNA-seq and scATAC-seq datasets
```{r}
# since the naming schemes for cell types are different, use this file to correspond cell type annotations in the scATAC-seq dataset compared to the scRNA-seq dataset
correspondence_between_ATAC_and_RNA <- read_delim(paste0(processed_data_directory, "AM_corresponding_RNA_seq_cells_for_filtered_ATAC_cell_types.txt"), delim = "\t")
# remove scATAC-seq cell types that are absent from the scRNA-seq dataset
indices_ATAC_cell_types_with_corresponding_RNA_seq_cell_types <- which(!is.na(correspondence_between_ATAC_and_RNA$RNA))
filtered_size_corrected_AA_supply_per_cell_type <- size_corrected_AA_supply_per_cell_type[amino_acids, indices_ATAC_cell_types_with_corresponding_RNA_seq_cell_types]
cell_types_for_TE_analysis <- colnames(filtered_size_corrected_AA_supply_per_cell_type)
corresponding_scRNA_labels <- correspondence_between_ATAC_and_RNA$RNA[indices_ATAC_cell_types_with_corresponding_RNA_seq_cell_types]
TEs_at_AA_level <- numeric(length(cell_types_for_TE_analysis))
names(TEs_at_AA_level) <- cell_types_for_TE_analysis
for (i in 1:length(corresponding_scRNA_labels)) {
AA_supply_from_tRNA <- size_corrected_AA_supply_per_cell_type[amino_acids , cell_types_for_TE_analysis[i]]
AA_demand_from_mRNA <- size_corrected_AA_demand_per_cell_type[amino_acids , corresponding_scRNA_labels[i]]
TEs_at_AA_level[i] <- cor(AA_supply_from_tRNA, AA_demand_from_mRNA, method = "spearman")
}
```
# Determine statistical significance of translation efficiencies
This takes about 6 minutes on macOS Catalina version 10.15.17. The results are saved as an R object file (.rds). Therefore, to skip this step, go to the next block which reads in an object after running this block.
```{r}
# identify amino acids that each tRNA gene is charged with
AAs_for_tRNA_genes <- as.vector(translate(reverseComplement(DNAStringSet(anticodons_for_tRNA_genes)), no.init.codon = TRUE))
# vector to store empirical p-value results
TE_p_values <- numeric(length(cell_types_for_TE_analysis))
# perform the following for all cell types in common between scATAC-seq and scRNA-seq dataset
for (i in 1:length(cell_types_for_TE_analysis)) {
# ATAC-seq cell type
select_ATAC_cell_type <- cell_types_for_TE_analysis[i]
# corresponding RNA-seq cell type
select_RNA_cell_type <- corresponding_scRNA_labels[i]
# number of null distribution samplings
N = 1000
# observed (true) AA supply usage for this cell type
mRNA_AA_usage <- size_corrected_AA_demand_per_cell_type[amino_acids, select_RNA_cell_type]
# observed (true) tRNA gene usage for this cell type: this will be shuffled N times to determine statistical significance
true_tRNA_usage <- size_corrected_tRNA_expression_per_cell_type[, select_ATAC_cell_type]
# vector to store the correlation coefficients, from random shuffling of tRNA counts
null_TEs_AA = numeric(N)
# perform the shuffles
for (j in 1:N) {
# sum up the cuts for each tRNA gene across all examples of that cell type, shuffle it using sample()
shuffled_tRNA_usage <- sample(true_tRNA_usage)
# create a tibble storing this shuffled tRNA gene usage
random_tibble <- tibble(
sums = shuffled_tRNA_usage,
AA = AAs_for_tRNA_genes
)
# combine shuffled tRNA gene counts at AA level
random_tRNA_AA_usage <- summarize(group_by(random_tibble, AA), sums = sum(sums))
random_tRNA_AA_usage <- random_tRNA_AA_usage[which(random_tRNA_AA_usage$AA %in% amino_acids), ]
random_tRNA_AA_usage <- random_tRNA_AA_usage$sums
# calculate TE (correlated between shuffled AA supply and unshuffled AA demand)
random_tRNA_AA_usage = random_tRNA_AA_usage / sum(random_tRNA_AA_usage)
null_TEs_AA[j] = cor(random_tRNA_AA_usage, mRNA_AA_usage, method = 'spearman')
}
# fit parameters (mu and sigma for null distribution)
null_TEs_AA <- data.frame(null_dist = null_TEs_AA)
mean_random_correlations <- mean(null_TEs_AA$null_dist)
sd_random_correlations <- sd(null_TEs_AA$null_dist)
# calculate p-value for the actual TE (stored in the TEs_at_AA_level vector produced in the previous block)
TE_p_values[i] <- 1 - pnorm(TEs_at_AA_level[i], mean = mean_random_correlations, sd = sd_random_correlations)
}
TE_results_tibble <- tibble(
cell_type = names(TEs_at_AA_level),
TE = TEs_at_AA_level,
p_value = TE_p_values,
neg_log10_TE_p_value = -log10(TE_p_values)
)
saveRDS(TE_results_tibble, paste0(processed_data_directory, "AM_translation_efficiency_results.rds"))
```
# Load TE results
Load this block if you don't want to run the above block.
```{r}
# load translation efficiency results
TE_results_tibble <- readRDS(paste0(processed_data_directory, "AM_translation_efficiency_results.rds"))
```
# TE values: Mann-Whitney test comparing neurons against other cell types
```{r}
# add classification as neuronal or other
TE_results_tibble$classification <- "other"
# identify which cell types are neurons (cell types have "neuron" or "granule" in their names)
neuron_rows <- c(grep("neuron", TE_results_tibble$cell_type), grep("granule", TE_results_tibble$cell_type))
TE_results_tibble$classification[neuron_rows] <- "neuron"
ggplot(data = TE_results_tibble, mapping = aes(x = classification, y = TE, fill = classification)) +
theme_classic() +
geom_violin() +
geom_jitter(shape = 16, position = position_jitter(0.2), size = 3) +
labs(title = "Translation efficiencies (TE)", x = "cell type classification", y = "TE") +
ylim(0.6, 0.9)
# perform Mann-Whitney test comparing values for neurons vs. other cell types
print(wilcox.test(filter(TE_results_tibble, classification == "neuron")$TE, filter(TE_results_tibble, classification == "other")$TE))
```
# -log10(p-values) of TEs: Mann-Whitney test comparing neurons against other cell types
```{r}
ggplot(data = TE_results_tibble, mapping = aes(x = classification, y = neg_log10_TE_p_value, fill = classification)) +
theme_classic() +
geom_violin() +
geom_jitter(shape = 16, position = position_jitter(0.2), size = 3) +
labs(title = "TE p-values", x = "cell type classification", y = expression(-log[10]~p~value)) +
ylim(1, 7)
# perform Mann-Whitney test comparing values for neurons vs. other cell types
print(wilcox.test(filter(TE_results_tibble, classification == "neuron")$neg_log10_TE_p_value, filter(TE_results_tibble, classification == "other")$neg_log10_TE_p_value))
```
# Calculate ratio of AA supply to AA demand for each of the 20 classical AAs
Tests if there is any statistical significant difference in AA supply-demand ratio between neurons and other cell types for each of the 20 AAs
```{r}
# convert AA supply and demand counts to frequencies (so sum of AA supply/demand for a cell type adds to 1)
norm_size_corrected_AA_supply_per_cell_type <- sweep(size_corrected_AA_supply_per_cell_type, 2, colSums(size_corrected_AA_supply_per_cell_type), "/")
norm_size_corrected_AA_demand_per_cell_type <- sweep(size_corrected_AA_demand_per_cell_type, 2, colSums(size_corrected_AA_demand_per_cell_type), "/")
# divide normalized AA supply by normalized AA demand for each cell type available for TE analysis
AA_supply_versus_demand <- t(norm_size_corrected_AA_supply_per_cell_type[amino_acids, cell_types_for_TE_analysis] / norm_size_corrected_AA_demand_per_cell_type[amino_acids, corresponding_scRNA_labels])
```
```{r}
# change colnames to three letter AA codes
colnames(AA_supply_versus_demand) <- three_letter_amino_acids
# convert matrix to tibble for ease in plotting
AA_supply_versus_demand_tibble <- as.data.frame(AA_supply_versus_demand) %>%
rownames_to_column(var = "cell_type") %>%
pivot_longer(cols = all_of(three_letter_amino_acids), names_to = "amino_acid", values_to = "supply_over_demand")
# add classification as neuron vs. other
AA_supply_versus_demand_tibble$classification <- "other"
AA_supply_versus_demand_tibble$classification[grep("neuron", AA_supply_versus_demand_tibble$cell_type)] <- "neuron"
AA_supply_versus_demand_tibble$classification[grep("granule", AA_supply_versus_demand_tibble$cell_type)] <- "neuron"
# violin plot
ggplot(data = AA_supply_versus_demand_tibble, mapping = aes(x = classification, y = supply_over_demand, fill = classification)) +
theme_classic() +
geom_violin() +
geom_jitter() +
facet_wrap(~ amino_acid, nrow = 5, scales = "free") +
labs(x = "cell type classification", y = "ratio of AA supply over demand") +
theme(axis.text.x = element_blank(), strip.background = element_blank())
# Compute Mann-Whitney statistic
AA_wilcox_tests <- numeric(length(three_letter_amino_acids))
names(AA_wilcox_tests) <- three_letter_amino_acids
fc_in_means <- numeric(length(three_letter_amino_acids))
names(fc_in_means) <- three_letter_amino_acids
for (i in 1:length(three_letter_amino_acids)) {
neuron_ratio <- filter(AA_supply_versus_demand_tibble, amino_acid == three_letter_amino_acids[i], classification == "neuron")$supply_over_demand
other_ratio <- filter(AA_supply_versus_demand_tibble, amino_acid == three_letter_amino_acids[i], classification == "other")$supply_over_demand
AA_wilcox_tests[i] <- unlist(wilcox.test(neuron_ratio, other_ratio)[3]) # extract p-value from Mann-Whitney test
fc_in_means[i] <- mean(neuron_ratio) / mean(other_ratio)
}
# Create barplot of Mann-Whitney p-values for AAs
AA_wilcox_tests_tibble <- tibble(
AA = three_letter_amino_acids,
pvals = AA_wilcox_tests,
fc_in_means = fc_in_means
)
ggplot(data = AA_wilcox_tests_tibble, mapping = aes(x = reorder(AA, log10(pvals)), y = -log10(pvals), fill = fc_in_means)) +
theme_classic() +
geom_bar(stat = "identity") +
geom_abline(slope = 0, intercept = -log10(0.05)) +
labs(x = "amino acid", y = expression(-log[10]~p~value)) +
coord_flip()
```
# Additional translation efficiency analysis
Above, the AA supply and demand were correlated by pooling all anticodons and codons pertaining to a particular amino acid. Here, we divide the six box amino acids (leucine/L, arginine/R, serine/S) into 2 groups based on which anticodons can base pair with each codon. Specifically, NAG anticodons can base pair with CTN codons (referred to as L) and YAA anticodons can base pair with TTR codons (referred to as L2). NCG anticodons can base pair with CGN codons (R), while YCT anticodons can base pair with AGR codons (R2). NGA anticodons can base pair with TCN codons (S) and RCT anticodons can base pair with AGY codons (S2). Note that not all of these base pairings occur in mammals because the anticodon is absent.
Because of this division, we calculate the correlation of AA supply and demand across 23 rather than 20 groups.
```{r}
twenty_three_AAs <- c(amino_acids, "L2", "R2", "S2")
# AAs for codons and anticodons
anticodon_list <- rownames(size_corrected_anticodon_per_cell_type)
AAs_for_anticodons <- as.vector(translate(reverseComplement(DNAStringSet(rownames(size_corrected_anticodon_per_cell_type))), no.init.codon = TRUE))
codon_list <- rownames(size_corrected_codon_usage_per_cell_type)
AAs_for_codons <- as.vector(translate(DNAStringSet(codon_list), no.init.codon = TRUE))
# divide six boxes for anticodons
AAs_for_anticodons[which(anticodon_list %in% c("TAA", "CAA"))] <- "L2"
AAs_for_anticodons[which(anticodon_list %in% c("TCT", "CCT"))] <- "R2"
AAs_for_anticodons[which(anticodon_list %in% c("GCT", "ACT"))] <- "S2"
# divide six boxes for codons
AAs_for_codons[which(codon_list %in% c("TTA", "TTG"))] <- "L2"
AAs_for_codons[which(codon_list %in% c("AGA", "AGG"))] <- "R2"
AAs_for_codons[which(codon_list %in% c("AGT", "AGC"))] <- "S2"
# 23 AA supply matrix
twenty_three_AA_supply <- matrix(data = NA, nrow = length(twenty_three_AAs), ncol = dim(size_corrected_anticodon_per_cell_type)[2])
dimnames(twenty_three_AA_supply) <- list(twenty_three_AAs, colnames(size_corrected_anticodon_per_cell_type))
# 23 AA demand matrix
twenty_three_AA_demand <- matrix(data = NA, nrow = length(twenty_three_AAs), ncol = dim(size_corrected_codon_usage_per_cell_type)[2])
dimnames(twenty_three_AA_demand) <- list(twenty_three_AAs, colnames(size_corrected_codon_usage_per_cell_type))
# fill in table
for (i in 1:length(twenty_three_AAs)) {
select_AA <- twenty_three_AAs[i]
twenty_three_AA_supply[i, ] <- colSums(size_corrected_anticodon_per_cell_type[which(AAs_for_anticodons == select_AA), , drop = FALSE])
twenty_three_AA_demand[i, ] <- colSums(size_corrected_codon_usage_per_cell_type[which(AAs_for_codons == select_AA), , drop = FALSE])
}
```
# Calculate translation efficiencies for 23-AA set
```{r}
twenty_three_TEs_at_AA_level <- numeric(length(cell_types_for_TE_analysis))
names(twenty_three_TEs_at_AA_level) <- cell_types_for_TE_analysis
for (i in 1:length(corresponding_scRNA_labels)) {
AA_supply_from_tRNA <- twenty_three_AA_supply[, cell_types_for_TE_analysis[i]]
AA_demand_from_mRNA <- twenty_three_AA_demand[, corresponding_scRNA_labels[i]]
twenty_three_TEs_at_AA_level[i] <- cor(AA_supply_from_tRNA, AA_demand_from_mRNA, method = "spearman")
}
```
# Determine statistical significance of translation efficiencies
This takes about 6 minutes on macOS Catalina version 10.15.17. The results are saved as an R object file (.rds). Therefore, to skip this step, go to the next block which reads in an object after running this block.
```{r}
# identify amino acids that each tRNA gene is charged with
AAs_for_tRNA_genes <- as.vector(translate(reverseComplement(DNAStringSet(anticodons_for_tRNA_genes)), no.init.codon = TRUE))
# add six boxes division
AAs_for_tRNA_genes[which(anticodons_for_tRNA_genes %in% c("TAA", "CAA"))] <- "L2"
AAs_for_tRNA_genes[which(anticodons_for_tRNA_genes %in% c("TCT", "CCT"))] <- "R2"
AAs_for_tRNA_genes[which(anticodons_for_tRNA_genes %in% c("GCT", "ACT"))] <- "S2"
# vector to store empirical p-value results
TE_p_values <- numeric(length(cell_types_for_TE_analysis))
# perform the following for all cell types in common between scATAC-seq and scRNA-seq dataset
for (i in 1:length(cell_types_for_TE_analysis)) {
# ATAC-seq cell type
select_ATAC_cell_type <- cell_types_for_TE_analysis[i]
# corresponding RNA-seq cell type
select_RNA_cell_type <- corresponding_scRNA_labels[i]
# number of null distribution samplings
N = 1000
# observed (true) AA supply usage for this cell type
mRNA_AA_usage <- twenty_three_AA_demand[amino_acids, select_RNA_cell_type]
# observed (true) tRNA gene usage for this cell type: this will be shuffled N times to determine statistical significance
true_tRNA_usage <- size_corrected_tRNA_expression_per_cell_type[, select_ATAC_cell_type]
# vector to store the correlation coefficients, from random shuffling of tRNA counts
null_TEs_AA = numeric(N)
# perform the shuffles
for (j in 1:N) {
# sum up the cuts for each tRNA gene across all examples of that cell type, shuffle it using sample()
shuffled_tRNA_usage <- sample(true_tRNA_usage)
# create a tibble storing this shuffled tRNA gene usage
random_tibble <- tibble(
sums = shuffled_tRNA_usage,
AA = AAs_for_tRNA_genes
)
random_tibble$AA[which(anticodons_for_tRNA_genes %in% c("TAA", "CAA"))] <- "L2"
random_tibble$AA[which(anticodons_for_tRNA_genes %in% c("TCT", "CCT"))] <- "R2"
random_tibble$AA[which(anticodons_for_tRNA_genes %in% c("GCT", "ACT"))] <- "S2"
# combine shuffled tRNA gene counts at AA level
random_tRNA_AA_usage <- summarize(group_by(random_tibble, AA), sums = sum(sums))
random_tRNA_AA_usage <- random_tRNA_AA_usage[which(random_tRNA_AA_usage$AA %in% amino_acids), ]
random_tRNA_AA_usage <- random_tRNA_AA_usage$sums
# calculate TE (correlated between shuffled AA supply and unshuffled AA demand)
random_tRNA_AA_usage = random_tRNA_AA_usage / sum(random_tRNA_AA_usage)
null_TEs_AA[j] = cor(random_tRNA_AA_usage, mRNA_AA_usage, method = 'spearman')
}
# fit parameters (mu and sigma for null distribution)
null_TEs_AA <- data.frame(null_dist = null_TEs_AA)
mean_random_correlations <- mean(null_TEs_AA$null_dist)
sd_random_correlations <- sd(null_TEs_AA$null_dist)
# calculate p-value for the actual TE (stored in the twenty_three_TEs_at_AA_level vector produced in the previous block)
TE_p_values[i] <- 1 - pnorm(twenty_three_TEs_at_AA_level[i], mean = mean_random_correlations, sd = sd_random_correlations)
}
twenty_three_TE_results_tibble <- tibble(
cell_type = names(twenty_three_TEs_at_AA_level),
TE = twenty_three_TEs_at_AA_level,
p_value = TE_p_values,
neg_log10_TE_p_value = -log10(TE_p_values)
)
saveRDS(twenty_three_TE_results_tibble, paste0(processed_data_directory, "AM_23_translation_efficiency_results.rds"))
```
# Load TE results
Load this block if you don't want to run the above block.
```{r}
# load translation efficiency results
twenty_three_TE_results_tibble <- readRDS(paste0(processed_data_directory, "AM_23_translation_efficiency_results.rds"))
```
# TE values: Mann-Whitney test comparing neurons against other cell types
```{r}
# add classification as neuronal or other
twenty_three_TE_results_tibble$classification <- "other"
# identify which cell types are neurons (cell types have "neuron" or "granule" in their names)
neuron_rows <- c(grep("neuron", twenty_three_TE_results_tibble$cell_type), grep("granule", twenty_three_TE_results_tibble$cell_type))
twenty_three_TE_results_tibble$classification[neuron_rows] <- "neuron"
ggplot(data = twenty_three_TE_results_tibble, mapping = aes(x = classification, y = TE, fill = classification)) +
theme_classic() +
geom_violin() +
geom_jitter(shape = 16, position = position_jitter(0.2), size = 3) +
labs(title = "Translation efficiencies (TE)", x = "cell type classification", y = "TE") +
ylim(0.6, 0.9)
# perform Mann-Whitney test comparing values for neurons vs. other cell types
print(wilcox.test(filter(twenty_three_TE_results_tibble, classification == "neuron")$TE, filter(twenty_three_TE_results_tibble, classification == "other")$TE))
ggsave("/Volumes/Samsung_USB/Fulbright/reviewer_stuff/AM_23_TEs.pdf", height = 6, width = 6)
```
# -log10(p-values) of TEs: Mann-Whitney test comparing neurons against other cell types
```{r}
ggplot(data = twenty_three_TE_results_tibble, mapping = aes(x = classification, y = neg_log10_TE_p_value, fill = classification)) +
theme_classic() +
geom_violin() +
geom_jitter(shape = 16, position = position_jitter(0.2), size = 3) +
labs(title = "TE p-values", x = "cell type classification", y = expression(-log[10]~p~value)) +
ylim(1, 7)
# perform Mann-Whitney test comparing values for neurons vs. other cell types
print(wilcox.test(filter(twenty_three_TE_results_tibble, classification == "neuron")$neg_log10_TE_p_value, filter(twenty_three_TE_results_tibble, classification == "other")$neg_log10_TE_p_value))
ggsave("/Volumes/Samsung_USB/Fulbright/reviewer_stuff/AM_23_TE_p_values.pdf", height = 6, width = 6)
```
# Calculate ratio of AA supply to AA demand for each of the 20 classical AAs
Tests if there is any statistical significant difference in AA supply-demand ratio between neurons and other cell types for each of the 20 AAs
```{r}
# convert AA supply and demand counts to frequencies (so sum of AA supply/demand for a cell type adds to 1)
twenty_three_AA_supply_per_cell_type <- sweep(twenty_three_AA_supply, 2, colSums(twenty_three_AA_supply), "/")
twenty_three_AA_demand_per_cell_type <- sweep(twenty_three_AA_demand, 2, colSums(twenty_three_AA_demand), "/")
# divide normalized AA supply by normalized AA demand for each cell type available for TE analysis
twenty_three_AA_supply_versus_demand <- t(twenty_three_AA_supply_per_cell_type[twenty_three_AAs, cell_types_for_TE_analysis] / twenty_three_AA_demand_per_cell_type[twenty_three_AAs, corresponding_scRNA_labels])
```
```{r}
# change colnames to three letter AA codes
three_letter_amino_acids_plus_divisions <- c(three_letter_amino_acids, "Arg-2", "Leu-2", "Ser-2")
colnames(twenty_three_AA_supply_versus_demand) <- three_letter_amino_acids_plus_divisions
# convert matrix to tibble for ease in plotting
twenty_three_AA_supply_versus_demand_tibble <- as.data.frame(twenty_three_AA_supply_versus_demand) %>%
rownames_to_column(var = "cell_type") %>%
pivot_longer(cols = all_of(three_letter_amino_acids_plus_divisions), names_to = "amino_acid", values_to = "supply_over_demand")
# add classification as neuron vs. other
twenty_three_AA_supply_versus_demand_tibble$classification <- "other"
twenty_three_AA_supply_versus_demand_tibble$classification[grep("neuron", twenty_three_AA_supply_versus_demand_tibble$cell_type)] <- "neuron"
twenty_three_AA_supply_versus_demand_tibble$classification[grep("granule", twenty_three_AA_supply_versus_demand_tibble$cell_type)] <- "neuron"
# violin plot
ggplot(data = twenty_three_AA_supply_versus_demand_tibble, mapping = aes(x = classification, y = supply_over_demand, fill = classification)) +
theme_classic() +
geom_violin() +
geom_jitter(size = 0.5) +
facet_wrap(~ amino_acid, nrow = 5, scales = "free") +
labs(x = "cell type classification", y = "ratio of AA supply over demand") +
theme(axis.text.x = element_blank(), strip.background = element_blank())
ggsave("/Volumes/Samsung_USB/Fulbright/reviewer_stuff/AM_23_AA_SD_ratio_violins.pdf", height = 6, width = 6)
# Compute Mann-Whitney statistic
AA_wilcox_tests <- numeric(length(three_letter_amino_acids_plus_divisions))
names(AA_wilcox_tests) <- three_letter_amino_acids_plus_divisions
fc_in_means <- numeric(length(three_letter_amino_acids_plus_divisions))
names(fc_in_means) <- three_letter_amino_acids_plus_divisions
for (i in 1:length(three_letter_amino_acids_plus_divisions)) {
neuron_ratio <- filter(twenty_three_AA_supply_versus_demand_tibble, amino_acid == three_letter_amino_acids_plus_divisions[i], classification == "neuron")$supply_over_demand
other_ratio <- filter(twenty_three_AA_supply_versus_demand_tibble, amino_acid == three_letter_amino_acids_plus_divisions[i], classification == "other")$supply_over_demand
AA_wilcox_tests[i] <- unlist(wilcox.test(neuron_ratio, other_ratio)[3]) # extract p-value from Mann-Whitney test
fc_in_means[i] <- mean(neuron_ratio) / mean(other_ratio)
}
# Create barplot of Mann-Whitney p-values for AAs
AA_wilcox_tests_tibble <- tibble(
AA = three_letter_amino_acids_plus_divisions,
pvals = AA_wilcox_tests,
fc_in_means = fc_in_means
)
ggplot(data = AA_wilcox_tests_tibble, mapping = aes(x = reorder(AA, log10(pvals)), y = -log10(pvals), fill = fc_in_means)) +
theme_classic() +
geom_bar(stat = "identity") +
geom_abline(slope = 0, intercept = -log10(0.05)) +
labs(x = "amino acid", y = expression(-log[10]~p~value)) +
coord_flip()
ggsave("/Volumes/Samsung_USB/Fulbright/reviewer_stuff/AM_23_AA_SD_ratio_barplot.pdf", height = 6, width = 6)
```