-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
218 lines (183 loc) · 6.89 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class GradReverse(torch.autograd.Function):
def __init__(self, lambd=1.):
self.lambd = lambd
def forward(self, x):
return x.view_as(x)
def backward(self, grad_output):
return grad_output * -self.lambd
def grad_reverse(x, lambd):
return GradReverse(lambd)(x)
class MnistFeatureExtractor(nn.Module):
def __init__(self, activation=F.leaky_relu):
super(MnistFeatureExtractor, self).__init__()
self.conv1 = nn.Conv2d(3, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.activation = activation
def get_mtx(self):
return None
def forward(self, x):
x = self.activation(F.max_pool2d(self.conv1(x), 2))
x = self.activation(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
return x.view(x.size(0), -1)
class MnistClassPredictor(nn.Module):
def __init__(self, input_size=320, inner_size=100, activation=F.leaky_relu):
super(MnistClassPredictor, self).__init__()
self.fc1 = nn.Linear(input_size, inner_size)
self.fc2 = nn.Linear(inner_size, 10)
self.activation = activation
def get_mtx(self):
return self.fc1
def forward(self, x):
x = self.activation(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class MnistDomain(nn.Module):
def __init__(self, input_size=320, inner_size=100, grad_func=grad_reverse, activation=F.leaky_relu):
super(MnistDomain, self).__init__()
self.fc1 = nn.Linear(input_size, inner_size)
self.fc2 = nn.Linear(inner_size, 2)
self.grad_func = grad_func
self.activation = activation
def get_mtx(self):
return self.fc1
def forward(self, x, lambd=1.):
x = self.grad_func(x, lambd)
x = self.activation(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class ConceptorModel(nn.Module):
def __init__(self, model_f, C, device):
super(ConceptorModel, self).__init__()
self.model_f = model_f
self.C = torch.from_numpy(C).float().to(device)
for param in self.model_f.parameters():
param.requires_grad = False
def get_mtx(self):
return self.C
def forward(self, x, *args):
x = self.model_f(x)
return torch.t(torch.mm(self.C, torch.t(x)))
class DomainPredictor(nn.Module):
def __init__(self, input_size=320, inner_size=100, activation=F.leaky_relu):
super(DomainPredictor, self).__init__()
self.fc1 = nn.Linear(input_size, inner_size)
self.fc2 = nn.Linear(inner_size, 2)
self.activation = activation
def get_mtx(self):
return self.fc1
def forward(self, x, *args):
x = self.activation(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class SingleLayerModel(nn.Module):
def __init__(self, input_size=320, output_size=2, softmax=False, dropout=False, grad_func=None, activation=None):
super(SingleLayerModel, self).__init__()
self.fc = nn.Linear(input_size, output_size)
self.softmax = softmax
self.dropout = dropout
self.grad_func = grad_func
self.activation = activation
def get_mtx(self):
return self.fc
def forward(self, x, lambd=1.):
if self.grad_func is not None:
x = self.grad_func(x, lambd)
x = self.fc(x)
if self.activation is not None:
x = self.activation(x)
if self.dropout:
x = F.dropout(x, training=self.training)
if self.softmax:
return F.log_softmax(x, dim=1)
return x
class CutHalf(nn.Module):
def __init__(self, output_model, half=0):
super(CutHalf, self).__init__()
self.half = half
self.output_model = output_model
def get_mtx(self):
return self.output_model.get_mtx()
def forward(self, x, *args):
x = x[:, :x.size()[1]//2] if self.half == 0 else x[:, x.size()[1]//2:]
if args:
return self.output_model(x, *args)
return self.output_model(x)
class LinearFromList(nn.Module):
def __init__(self, size_list, activation=F.leaky_relu, use_gr=False, output_model=None):
super(LinearFromList, self).__init__()
self.size_list = size_list
self.linears = nn.ModuleList([nn.Linear(size_list[i], size_list[i+1]) for i in range(len(size_list)-1)])
self.output_model = output_model
self.use_gr = use_gr
self.activation = activation
def get_mtx(self):
return self.linears[0] if len(self.linears) > 0 else self.output_model.get_mtx()
def split(self, split_after):
if split_after > len(self.linears):
return self, None
new_model = LinearFromList(self.size_list[:split_after+1], use_gr=self.use_gr)
new_model_out = LinearFromList(self.size_list[split_after:], use_gr=self.use_gr, output_model=self.output_model)
return new_model, new_model_out
def forward(self, x, lambd=1.):
if self.use_gr:
x = grad_reverse(x, lambd)
for layer in self.linears:
x = self.activation(layer(x))
x = F.dropout(x, training=self.training)
if self.output_model is not None:
return self.output_model(x)
return x
class SequentialModel(nn.Sequential):
def __init__(self, *args):
super(SequentialModel, self).__init__(*args)
def get_mtx(self):
first_param = next(self.parameters())
first_param.weight = first_param
return first_param
def forward(self, input, *args):
for module in self._modules.values():
input = module(input, *args)
return input
class MnistClassifier3D(nn.Module):
def __init__(self, input_size=320, inner_size=100, activation=F.leaky_relu):
super(MnistClassifier3D, self).__init__()
self.fc1 = nn.Linear(input_size, 3)
self.fc2 = nn.Linear(3, inner_size)
self.fc3 = nn.Linear(inner_size, 10)
self.activation = activation
def get_mtx(self):
return self.fc1
def get_3D(self, x, activation=True):
if activation:
return self.activation(self.fc1(x))
return self.fc1(x)
def forward(self, x):
x = self.activation(self.fc1(x))
x = self.activation(self.fc2(x))
x = F.dropout(x, training=self.training)
x = self.fc3(x)
return F.log_softmax(x, dim=1)
def extend_feature_extractor(model_f, model_continuation, freeze_model=True, return_size=True):
if freeze_model:
for param in model_f.parameters():
param.requires_grad = False
new_model_f = nn.Sequential(model_f, model_continuation)
if return_size:
return new_model_f, model_continuation.get_mtx().out_features
return new_model_f
def get_models(model_f_linear, model_c_linear, model_d_linear, activation=F.leaky_relu, use_gr=False, model_f_dropout=False):
model_f = nn.Sequential(MnistFeatureExtractor(), LinearFromList(model_f_linear, activation=activation))
if not model_f_dropout:
model_f = nn.Sequential(model_f, nn.Linear(model_f_linear[-1], model_f_linear[-1]))
model_c = LinearFromList(model_c_linear, activation=activation, output_model=SequentialModel(nn.Linear(model_c_linear[-1], 10), nn.LogSoftmax(dim=1)))
model_c.output_model.get_mtx = lambda: model_c.output_model[0]
model_d = LinearFromList(model_d_linear[:-1], activation=activation, use_gr=use_gr, output_model=DomainPredictor(model_d_linear[-2], model_d_linear[-1]))
return model_f, model_c, model_d