-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathzero_shot_final.py
489 lines (396 loc) · 22.6 KB
/
zero_shot_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import numpy
import time
import argparse
import theano
import cPickle
import theano.tensor as T
from sklearn.metrics import f1_score
from layers import LeNetConvPoolLayer, ComposeLayerMatrix, ComposeLayerTensor, MaxRankingMarginCosine1
from utils import load_word_vec, load_training_data, read_relation_index, type_matrix, \
random_init_rel_vec_factor, load_types_1, get_types_for_train, input_matrix_1, input_matrix_1_test
__author__ = 'wilbur'
def main(args):
# initial parameters
embedding_size = args.embedding_size
mention_context_size = args.mention_context_size
type_context_size = args.type_context_size
embedding_file = args.embedding_path
hidden_units = args.hidden_units
learning_rate = args.learning_rate
margin = args.margin
batch_size = args.batch_size
n_epochs = args.num_epochs
relation_size = 82
nkerns = [500]
filter_size = [1, 1]
pool = [1, 1]
l1 = 0.000001
l2 = 0.000002
newbob = False
network_file = args.model_path
train_file = args.train
dev_file = args.dev
test_file = args.test
label_file = args.ontology_path
label_file_norm = args.norm_ontology_path
relation_file = args.relation_path
train_type_flag = args.seen_types
tup_representation_size = embedding_size * 2
# load word vectors
word_vectors, vector_size = load_word_vec(embedding_file)
# read train and dev file
print ("start loading train and dev file ... ")
doc_id_list_train, type_list_train, trigger_list_train, left_word_list_train, relation_list_train, \
right_word_list_train = load_training_data(train_file)
doc_id_list_dev, type_list_dev, trigger_list_dev, left_word_list_dev, relation_list_dev, \
right_word_list_dev = load_training_data(dev_file)
doc_id_list_test, type_list_test, trigger_list_test, left_word_list_test, relation_list_test, \
right_word_list_test = load_training_data(test_file)
print ("start loading arg and relation files ... ")
all_type_list, all_type_structures = load_types_1(label_file_norm)
rel_index, index_rel = read_relation_index(relation_file)
type_size = len(all_type_list)
# using a matrix to represent each relation
relation_matrix = random_init_rel_vec_factor(relation_file, tup_representation_size*tup_representation_size)
train_types = get_types_for_train(train_type_flag, label_file)
# prepare data structure
print ("start preparing data structures ... ")
curSeed = 23455
rng = numpy.random.RandomState(curSeed)
seed = rng.get_state()[1][0]
print ("seed: ", seed)
result_index_train_matrix, result_vector_train_matrix, input_context_train_matrix, input_trigger_train_matrix, \
relation_binary_train_matrix, pos_neg_train_matrix = input_matrix_1(
type_list_train, trigger_list_train, left_word_list_train, relation_list_train, right_word_list_train,
embedding_size, mention_context_size, relation_size, label_file, word_vectors, rel_index, train_type_flag)
result_index_dev_matrix, result_vector_dev_matrix, input_context_dev_matrix, input_trigger_dev_matrix, \
relation_binary_dev_matrix, pos_neg_dev_matrix = input_matrix_1_test(
type_list_dev, trigger_list_dev, left_word_list_dev, relation_list_dev, right_word_list_dev, embedding_size,
mention_context_size, relation_size, label_file, word_vectors, rel_index, train_type_flag)
result_index_test_matrix, result_vector_test_matrix, input_context_test_matrix, input_trigger_test_matrix, \
relation_binary_test_matrix, pos_neg_test_matrix = input_matrix_1_test(
type_list_test, trigger_list_test, left_word_list_test, relation_list_test, right_word_list_test,
embedding_size, mention_context_size, relation_size, label_file, word_vectors, rel_index, train_type_flag)
input_type_matrix, input_type_structure_matrix = type_matrix(
all_type_list, all_type_structures, embedding_file, type_context_size)
time1 = time.time()
dt = theano.config.floatX
train_set_content = theano.shared(numpy.matrix(input_context_train_matrix, dtype=dt))
valid_set_content = theano.shared(numpy.matrix(input_context_dev_matrix, dtype=dt))
test_set_content = theano.shared(numpy.matrix(input_context_test_matrix, dtype=dt))
train_set_trigger = theano.shared(numpy.matrix(input_trigger_train_matrix, dtype=dt))
valid_set_trigger = theano.shared(numpy.matrix(input_trigger_dev_matrix, dtype=dt))
test_set_trigger = theano.shared(numpy.matrix(input_trigger_test_matrix, dtype=dt))
train_set_relation_binary = theano.shared(numpy.matrix(relation_binary_train_matrix, dtype=dt))
valid_set_relation_binary = theano.shared(numpy.matrix(relation_binary_dev_matrix, dtype=dt))
test_set_relation_binary = theano.shared(numpy.matrix(relation_binary_test_matrix, dtype=dt))
train_set_posneg = theano.shared(numpy.matrix(pos_neg_train_matrix, dtype=dt))
valid_set_posneg = theano.shared(numpy.matrix(pos_neg_dev_matrix, dtype=dt))
test_set_posneg = theano.shared(numpy.matrix(pos_neg_test_matrix, dtype=dt))
train_set_y = theano.shared(numpy.array(result_index_train_matrix, dtype=numpy.dtype(numpy.int32)))
valid_set_y = theano.shared(numpy.array(result_index_dev_matrix, dtype=numpy.dtype(numpy.int32)))
test_set_y = theano.shared(numpy.array(result_index_test_matrix, dtype=numpy.dtype(numpy.int32)))
train_set_y_vector = theano.shared(numpy.matrix(result_vector_train_matrix, dtype=dt))
valid_set_y_vector = theano.shared(numpy.matrix(result_vector_dev_matrix, dtype=dt))
test_set_y_vector = theano.shared(numpy.matrix(result_vector_test_matrix, dtype=dt))
train_set_type = theano.shared(numpy.matrix(input_type_matrix, dtype=dt))
train_set_type_structure = theano.shared(numpy.matrix(input_type_structure_matrix, dtype=dt))
train_types = theano.shared(numpy.matrix(train_types, dtype=dt))
# compute number of minibatches for training, validation and testing
n_train_batches = input_trigger_train_matrix.shape[0]
n_valid_batches = input_trigger_dev_matrix.shape[0]
n_test_batches = input_trigger_test_matrix.shape[0]
n_train_batches /= batch_size
n_valid_batches /= batch_size
n_test_batches /= batch_size
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x_content = T.matrix('x_content') # the data is presented as rasterized images
x_trigger = T.matrix('x_trigger') # the data is presented as rasterized images
x_relation_binary = T.matrix('x_relation_binary')
x_pos_neg_flag = T.matrix('x_pos_neg_flag')
x_type = T.matrix('x_type')
x_type_structure = T.matrix('x_type_structure')
y = T.ivector('y') # the labels are presented as 1D vector of
y_vector = T.matrix('y_vector') # the labels are presented as 1D vector of
x_train_types = T.matrix('x_train_types')
# [int] labels
i_shape = [tup_representation_size, mention_context_size] # this is the size of context matrizes
time2 = time.time()
print ("time for preparing data structures: ", time2 - time1)
# build actual model
print ('start building the model ... ')
time1 = time.time()
rel_w = theano.shared(value=relation_matrix, borrow=True) ## 26*400
# Construct the mention structure input Layer
layer0_input = x_content.reshape((batch_size, 1, i_shape[0], i_shape[1]))
layer0_input_binary_relation = x_relation_binary.reshape((batch_size, 1, relation_size, i_shape[1])) ## 100*1*26*5
# compose amr relation matrix to each tuple
compose_layer = ComposeLayerMatrix(input=layer0_input, input_binary_relation=layer0_input_binary_relation,
rel_w=rel_w, rel_vec_size=tup_representation_size)
layer1_input = compose_layer.output
# initialize the convolution weight matrix
filter_shape = (nkerns[0], 1, tup_representation_size, filter_size[1])
pool_size = (pool[0], pool[1])
fan_in = numpy.prod(filter_shape[1:])
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(pool_size))
w_bound = numpy.sqrt(6. / (fan_in + fan_out))
conv_w = theano.shared(numpy.asarray(
rng.uniform(low=-w_bound, high=w_bound, size=filter_shape),
dtype=theano.config.floatX),
borrow=True)
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
conv_b = theano.shared(value=b_values, borrow=True)
# conv with pool layer
layer1_conv = LeNetConvPoolLayer(rng, W=conv_w, b=conv_b, input=layer1_input,
image_shape=(batch_size, 1, i_shape[0], i_shape[1]),
filter_shape=filter_shape, poolsize=pool_size)
layer1_output = layer1_conv.output
layer1_flattened = layer1_output.flatten(2)
trigger_features_shaped = x_trigger.reshape((batch_size, embedding_size))
layer2_input = T.concatenate([layer1_flattened, trigger_features_shaped], axis=1)
# Construct the type structure input Layer
layer_type_input = x_type_structure.reshape((type_size, 1, tup_representation_size, type_context_size))
filter_shape_type = (nkerns[0], 1, tup_representation_size, filter_size[1])
pool_size_type = (pool[0], pool[1])
# initialize the implicit relation tensor
type_tensor_shape = (tup_representation_size, tup_representation_size, tup_representation_size)
type_tensor_w = theano.shared(numpy.asarray(rng.uniform(low=-w_bound, high=w_bound, size=type_tensor_shape),
dtype=theano.config.floatX), borrow=True)
# compose relation tensor to each tuple
compose_type_layer = ComposeLayerTensor(input=layer_type_input, tensor=type_tensor_w)
layer_type_input1 = compose_type_layer.output
# conv with pool layer
layer1_conv_type = LeNetConvPoolLayer(rng, W=conv_w, b=conv_b, input=layer_type_input1,
image_shape=(type_size, 1, tup_representation_size, type_context_size),
filter_shape=filter_shape_type, poolsize=pool_size_type)
layer1_type_output = layer1_conv_type.output
layer1_type_flattened = layer1_type_output.flatten(2)
types_shaped = x_type.reshape((type_size, embedding_size))
layer2_type_input = T.concatenate([layer1_type_flattened, types_shaped], axis=1)
layer2_type_input_size = nkerns[0] ** pool[1] + embedding_size
# ranking based max margin loss layer
train_types_signal = x_train_types.reshape((type_size, 1))
pos_neg_flag = x_pos_neg_flag.reshape((batch_size, 1))
layer3 = MaxRankingMarginCosine1(rng=rng, input=layer2_input, input_label=layer2_type_input, true_label=y_vector,
n_in=layer2_type_input_size, margin=margin, batch_size=batch_size,
type_size=type_size, train_type_signal=train_types_signal,
pos_neg_flag=pos_neg_flag)
cost = layer3.loss
# create a list of all model parameters to be fit by gradient descent
param_list = [compose_layer.params, layer1_conv.params, compose_type_layer.params]
params = []
for p in param_list:
params += p
# the cost we minimize during training is the NLL of the model
lambd1 = T.scalar('lambda1', dt)
lambd2 = T.scalar('lambda2', dt)
# L1 and L2 regularization possible
reg2 = 0
reg1 = 0
for p in param_list:
reg2 += T.sum(p[0] ** 2)
reg1 += T.sum(abs(p[0]))
cost += lambd2 * reg2
cost += lambd1 * reg1
lr = T.scalar('lr', dt)
start = index * batch_size
end = (index + 1) * batch_size
validVariables = {}
validVariables[x_content] = valid_set_content[start: end]
validVariables[x_trigger] = valid_set_trigger[start: end]
validVariables[x_relation_binary] = valid_set_relation_binary[start: end]
validVariables[x_type] = train_set_type
validVariables[x_type_structure] = train_set_type_structure
validVariables[y] = valid_set_y[start: end]
validVariables[y_vector] = valid_set_y_vector[start: end]
validVariables[x_train_types] = train_types
validVariables[x_pos_neg_flag] = valid_set_posneg[start: end]
testVariables = {}
testVariables[x_content] = test_set_content[start: end]
testVariables[x_trigger] = test_set_trigger[start: end]
testVariables[x_relation_binary] = test_set_relation_binary[start: end]
testVariables[x_type] = train_set_type
testVariables[x_type_structure] = train_set_type_structure
testVariables[y] = test_set_y[start: end]
testVariables[y_vector] = test_set_y_vector[start: end]
testVariables[x_train_types] = train_types
testVariables[x_pos_neg_flag] = test_set_posneg[start: end]
trainVariables = {}
trainVariables[x_content] = train_set_content[start: end]
trainVariables[x_trigger] = train_set_trigger[start: end]
trainVariables[x_relation_binary] = train_set_relation_binary[start: end]
trainVariables[x_type] = train_set_type
trainVariables[x_type_structure] = train_set_type_structure
trainVariables[y] = train_set_y[start: end]
trainVariables[y_vector] = train_set_y_vector[start: end]
trainVariables[x_train_types] = train_types
trainVariables[x_pos_neg_flag] = train_set_posneg[start: end]
print ("length of train variables ", len(trainVariables))
# create a list of gradients for all model parameters
grads = T.grad(cost, params)
# train_model is a function that updates the model parameters by SGD Since this model has many parameters,
# it would be tedious to manually create an update rule for each model parameter. We thus create the updates
# list by automatically looping over all (params[i],grads[i]) pairs.
updates = []
for param_i, grad_i in zip(params, grads):
updates.append((param_i, param_i - lr * grad_i))
test_model_confidence = theano.function([index], layer3.results(y), on_unused_input='ignore', givens=testVariables)
eval_model_confidence = theano.function([index], layer3.results(y), on_unused_input='ignore', givens=validVariables)
train_model = theano.function([index, lr, lambd1, lambd2], [cost, layer3.loss], updates=updates,
on_unused_input='ignore', givens=trainVariables)
time2 = time.time()
print ("time for building the model: ", time2 - time1)
# Train the MODEL
print ('start training ... ')
time1 = time.time()
num_examples_per_epoch = len(trigger_list_train)
validation_frequency = num_examples_per_epoch / batch_size # validate after each epoch
best_params = []
best_micro_fscore = -1
last_fscore = -1
best_macro_fscore = -1
best_iter = 0
best_micro_fscore_eval = -1
best_macro_fscore_eval = -1
best_iter_eval = 0
start_time = time.clock()
epoch = 0
done_looping = False
max_no_improvement = 5
no_improvement = 0
while (epoch < n_epochs) and (not done_looping):
print ('epoch = ', epoch)
epoch += 1
this_n_train_batches = num_examples_per_epoch / batch_size
for minibatch_index in xrange(this_n_train_batches):
iter = (epoch - 1) * this_n_train_batches + minibatch_index
if iter % 100 == 0:
print ('training @ iter = ', iter)
cost_ij, loss = train_model(minibatch_index, learning_rate, l1, l2)
print ("cost: " + str(cost_ij))
print ("loss: " + str(loss))
if (iter + 1) % validation_frequency == 0:
# test
confidence_eval = [test_model_confidence(i) for i in xrange(n_test_batches)]
confidence_list_eval = []
for r in range(0, len(confidence_eval)):
for r1 in range(0, batch_size):
hypo_result_eval = confidence_eval[r][0].item(r1)
confidence_list_eval.append(hypo_result_eval)
y_pred_eval = confidence_list_eval
y_true_eval = result_index_test_matrix[:n_test_batches * batch_size]
y_true_eval_2 = []
for i in range(len(y_true_eval)):
y_true_eval_2.append(int(y_true_eval[i]))
labels1 = []
for l in range(1, 380):
labels1.append(l)
this_micro_fscore_eval = f1_score(y_true_eval_2, y_pred_eval, labels=labels1, average='micro')
this_macro_fscore_eval = f1_score(y_true_eval_2, y_pred_eval, labels=labels1, average='macro')
print('EVAL: *** epoch %i, best_validation %f, best_validation_m1 %f, learning_rate %f, '
'minibatch %i/%i, validation fscore %f %%' % (epoch, best_micro_fscore_eval * 100.,
best_macro_fscore_eval * 100, learning_rate,
minibatch_index + 1, this_n_train_batches,
this_micro_fscore_eval * 100.))
if this_micro_fscore_eval > best_micro_fscore_eval:
best_micro_fscore_eval = this_micro_fscore_eval
best_macro_fscore_eval = this_macro_fscore_eval
best_iter_eval = iter
# validate
confidence = [eval_model_confidence(i) for i in xrange(n_valid_batches)]
confidence_list = []
for r in range(0, len(confidence)):
for r1 in range(0, batch_size):
hypo_result = confidence[r][0].item(r1)
confidence_list.append(hypo_result)
y_pred = confidence_list
y_true = result_index_dev_matrix[:n_valid_batches * batch_size]
y_true_2 = []
for i in range(len(y_true)):
y_true_2.append(int(y_true[i]))
labels = []
for l in range(1, 380):
labels.append(l)
this_micro_fscore = f1_score(y_true_2, y_pred, labels=labels, average='micro')
this_macro_fscore = f1_score(y_true_2, y_pred, labels=labels, average='macro')
print('epoch %i, best_validation %f, best_validation_m1 %f, learning_rate %f, minibatch %i/%i, '
'validation fscore %f %%' % (epoch, best_micro_fscore * 100., best_macro_fscore * 100,
learning_rate, minibatch_index + 1, this_n_train_batches,
this_micro_fscore * 100.))
# if we got the best validation score until now
if this_micro_fscore > best_micro_fscore:
best_micro_fscore = this_micro_fscore
best_macro_fscore = this_macro_fscore
best_iter = iter
best_params = []
for p in param_list:
p_param = []
for part in p:
p_param.append(part.get_value(borrow=False))
best_params.append(p_param)
no_improvement = 0
else:
if this_micro_fscore > last_fscore:
no_improvement -= 1
no_improvement = max(no_improvement, 0)
else:
no_improvement += 1
updatestep = minibatch_index + this_n_train_batches * (epoch - 1)
if newbob: # learning rate schedule depending on dev result
learning_rate /= 1.2
print ("reducing learning rate to ", learning_rate)
last_fscore = this_micro_fscore
if newbob: # learning rate schedule depending on dev result
if no_improvement > max_no_improvement or learning_rate < 0.0000001:
done_looping = True
break
if not newbob:
if epoch + 1 > 10:
learning_rate /= 1.2
print ("reducing learning rate to ", learning_rate)
if epoch + 1 > 50:
done_looping = True
break
end_time = time.clock()
print('Optimization complete.')
print('Best validation score of %f %% obtained for c=%i, nk=%i, f=%i, h=%i at iteration %i,' %
(best_micro_fscore * 100., mention_context_size, nkerns[0], filter_size[1], hidden_units, best_iter + 1))
time2 = time.time()
print ("time for training: ", time2 - time1)
print('Saving net.')
save_file = open(network_file, 'wb')
for p in best_params:
for p_part in p:
cPickle.dump(p_part, save_file, -1)
save_file.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train', type=str, default='data/aceEventStructure.train.ace.format.transfer.neg.10.txt',
help='path for train file')
parser.add_argument('--dev', type=str, default='data/aceEventStructure.dev.ace.format.transfer.neg.10.txt',
help='path for dev file')
parser.add_argument('--test', type=str, default='data/aceEventStructure.test.ace.format.transfer.neg.10.txt',
help='path for test file')
parser.add_argument('--model_path', type=str, default='model/final.model',
help='path for saving trained models')
parser.add_argument('--embedding_path', type=str,
default='data/wsd.model.ace.filter.txt',
help='path for pretrained word embedding')
parser.add_argument('--ontology_path', type=str, default='data/aceArgs.txt',
help='path for predefined ontology')
parser.add_argument('--norm_ontology_path', type=str, default='data/aceArgs.normalize.txt',
help='path for predefined ontology')
parser.add_argument('--seen_types', type=str, default='originalData/train.10', help='tag file for seen event types')
parser.add_argument('--relation_path', type=str, default='data/amrRelations.txt', help='amr relations')
parser.add_argument('--mention_context_size', type=int, default=5, help='number of mention tuples')
parser.add_argument('--type_context_size', type=int, default=5, help='number of type tuples')
parser.add_argument('--hidden_units', type=int, default=200, help='size of hidden units')
parser.add_argument('--learning_rate', type=float, default=0.1)
parser.add_argument('--margin', type=float, default=0.1)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--embedding_size', type=int, default=200)
parser.add_argument('--num_epochs', type=int, default=50)
args = parser.parse_args()
print(args)
main(args)