-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
159 lines (135 loc) · 5.17 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
from datetime import datetime
import json
import os
from pathlib import Path
from pyinstrument import Profiler
from pyinstrument.renderers import HTMLRenderer, JSONRenderer
from my_functions import my_function
WORKING_DIR = Path(os.path.abspath(os.path.dirname(__file__)))
OUTPUT_DIR = (WORKING_DIR / "outputs").resolve()
HELP_STR = (
"Produces profiling runs for a selection of models and parameters,\n"
"writing the results in HTML and/or JSON format.\n"
"Output names will default to the profiling timestamp if not provided."
)
def append_suffix(p: Path, ext: str) -> Path:
"""Appends (or changes) an extension to a path."""
return (p.parent / f"{p.stem}.{ext}").resolve()
def write_metadata(fname: Path = "meta.json", **kwargs) -> None:
metadata = {"timestamp": datetime.utcnow().strftime("%Y-%m-%d_%H%M")}
for key, value in kwargs.items():
if isinstance(value, Path):
value = os.fspath(value)
metadata[key] = value
print(f"Writing {fname}", end="...", flush=True)
with open(fname, "w") as f:
json.dump(metadata, f, ensure_ascii=True)
print("done")
return
def current_time(formatstr: str = "%Y-%m-%d_%H%M") -> str:
"""Produces a string of the current time in the specified format."""
return datetime.utcnow().strftime(formatstr)
def run_profiling(
output_dir: Path = OUTPUT_DIR,
output_name: Path = None,
write_pyis: bool = True,
write_stats: bool = True,
write_html: bool = False,
write_json: bool = False,
n_reps: int = 25,
) -> None:
# Create the directory that this profiling run will live in
output_dir = output_dir / current_time("%Y/%m/%d/%H%M")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Assign output filenames
if output_name is None:
output_file = output_dir / "output"
else:
output_file = output_dir / f"{output_name.stem}"
# Create the profiler to record the stack
# An instance of a Profiler can be start()-ed and stop()-ped multiple times,
# combining the recorded sessions into one at the end.
# As such, the same profiler can be used to record the profile of multiple scripts,
# however this may create large datafiles so using separate profilers is preferable
p = Profiler(interval=1e-3)
print(f"[{current_time('%H:%M:%S')}:INFO] Starting profiling runs")
# Profile scale_run
p.start()
for i in range(n_reps):
my_function()
p.stop()
print(f"[{current_time('%H:%M:%S')}:INFO] Profiling runs complete")
# Fetch the recorded session: if multiple scripts are to be profiled,
# this needs to be done after each model "run",
# and p needs to be re-initialised before starting the next model run.
scale_run_session = p.last_session
# Write outputs to files
# Renderer initialisation options:
# show_all: removes library calls where identifiable
# timeline: if true, samples are left in chronological order rather than total time
if write_pyis:
output_pyis_file = append_suffix(output_file, "pyisession")
print(f"Writing {output_pyis_file}", end="...", flush=True)
scale_run_session.save(output_pyis_file)
print("done")
if write_stats:
output_stat_file = append_suffix(output_file, "stats.json")
write_metadata(output_stat_file)
if write_html:
html_renderer = HTMLRenderer(show_all=False, timeline=False)
output_html_file = append_suffix(output_file, "html")
print(f"Writing {output_html_file}", end="...", flush=True)
with open(output_html_file, "w") as f:
f.write(html_renderer.render(scale_run_session))
print("done")
if write_json:
json_renderer = JSONRenderer(show_all=False, timeline=False)
output_json_file = append_suffix(output_file, "json")
print(f"Writing {output_json_file}", end="...", flush=True)
with open(output_json_file, "w") as f:
f.write(json_renderer.render(scale_run_session))
print("done")
return
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=HELP_STR)
parser.add_argument(
"--pyis",
action="store_true",
help="Write .ipysession output.",
dest="write_pyis",
)
parser.add_argument(
"--stats",
action="store_true",
help="Write summary stats.",
dest="write_stats",
)
parser.add_argument(
"--html", action="store_true", help="Write HTML output.", dest="write_html"
)
parser.add_argument(
"--json", action="store_true", help="Write JSON output.", dest="write_json"
)
parser.add_argument(
"--output_dir",
type=Path,
help="Redirect the output(s) to this directory.",
default=OUTPUT_DIR,
)
parser.add_argument(
"--output_name",
type=Path,
help="Name to give to the output file(s). File extensions will automatically appended.",
default=None,
)
parser.add_argument(
"-n",
type=int,
help="Number of function calls.",
dest="n_reps",
default="25",
)
args = parser.parse_args()
run_profiling(**vars(args))