-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
trainer_io.py
378 lines (293 loc) · 11.8 KB
/
trainer_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
import re
import signal
import warnings
from subprocess import call
import logging
import torch
import torch.distributed as dist
from pytorch_lightning.overrides.data_parallel import (
LightningDistributedDataParallel,
LightningDataParallel,
)
class TrainerIOMixin(object):
def get_model(self):
is_dp_module = isinstance(self.model, (LightningDistributedDataParallel,
LightningDataParallel))
model = self.model.module if is_dp_module else self.model
return model
# --------------------
# CHECK-POINTING
# --------------------
def restore_weights(self, model):
"""
To restore weights we have two cases.
First, attempt to restore hpc weights. If successful, don't restore
other weights.
Otherwise, try to restore actual weights
:param model:
:return:
"""
# clear cache before restore
if self.on_gpu:
torch.cuda.empty_cache()
# if script called from hpc resubmit, load weights
did_restore_hpc_weights = self.restore_hpc_weights_if_needed(model)
# clear cache after restore
if self.on_gpu:
torch.cuda.empty_cache()
if not did_restore_hpc_weights:
# restore weights if same exp version
self.restore_state_if_checkpoint_exists(model)
# wait for all models to restore weights
if self.use_ddp or self.use_ddp2:
# wait for all processes to catch up
dist.barrier()
# clear cache after restore
if self.on_gpu:
torch.cuda.empty_cache()
def restore_state_if_checkpoint_exists(self, model):
did_restore = False
# do nothing if there's not dir or callback
no_ckpt_callback = (self.checkpoint_callback is None) or (not self.checkpoint_callback)
if no_ckpt_callback or not os.path.exists(self.checkpoint_callback.filepath):
return did_restore
# restore trainer state and model if there is a weight for this experiment
last_epoch = -1
last_ckpt_name = None
# find last epoch
checkpoints = os.listdir(self.checkpoint_callback.filepath)
for name in checkpoints:
# ignore hpc ckpts
if 'hpc_' in name:
continue
if '.ckpt' in name:
epoch = name.split('epoch_')[1]
epoch = int(re.sub('[^0-9]', '', epoch))
if epoch > last_epoch:
last_epoch = epoch
last_ckpt_name = name
# restore last checkpoint
if last_ckpt_name is not None:
last_ckpt_path = os.path.join(self.checkpoint_callback.filepath, last_ckpt_name)
self.restore(last_ckpt_path, self.on_gpu)
logging.info(f'model and trainer restored from checkpoint: {last_ckpt_path}')
did_restore = True
return did_restore
# --------------------
# HPC SIGNAL HANDLING
# --------------------
def register_slurm_signal_handlers(self):
# see if we're using slurm (not interactive)
on_slurm = False
try:
job_name = os.environ['SLURM_JOB_NAME']
if job_name != 'bash':
on_slurm = True
except Exception as e:
pass
if on_slurm:
logging.info('set slurm handle signals')
signal.signal(signal.SIGUSR1, self.sig_handler)
signal.signal(signal.SIGTERM, self.term_handler)
def sig_handler(self, signum, frame):
if self.proc_rank == 0:
# save weights
logging.info('handling SIGUSR1')
self.hpc_save(self.weights_save_path, self.logger)
# find job id
job_id = os.environ['SLURM_JOB_ID']
cmd = 'scontrol requeue {}'.format(job_id)
# requeue job
logging.info('\nrequeing job {job_id}...')
result = call(cmd, shell=True)
# print result text
if result == 0:
logging.info('requeued exp {job_id}')
else:
logging.info('requeue failed...')
# close experiment to avoid issues
self.logger.close()
def term_handler(self, signum, frame):
# save
logging.info("bypassing sigterm")
# --------------------
# MODEL SAVE CHECKPOINT
# --------------------
def save_checkpoint(self, filepath):
checkpoint = self.dump_checkpoint()
# do the actual save
try:
torch.save(checkpoint, filepath)
except AttributeError:
if 'hparams' in checkpoint:
del checkpoint['hparams']
torch.save(checkpoint, filepath)
def restore(self, checkpoint_path, on_gpu):
# if on_gpu:
# checkpoint = torch.load(checkpoint_path)
# else:
# load on CPU first
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
# load model state
model = self.get_model()
# load the state_dict on the model automatically
model.load_state_dict(checkpoint['state_dict'])
if on_gpu:
model.cuda(self.root_gpu)
# load training state (affects trainer only)
self.restore_training_state(checkpoint)
def dump_checkpoint(self):
checkpoint = {
'epoch': self.current_epoch,
'global_step': self.global_step
}
if self.checkpoint_callback is not None and self.checkpoint_callback is not False:
checkpoint['checkpoint_callback_best'] = self.checkpoint_callback.best
if self.early_stop_callback is not None and self.checkpoint_callback is not False:
checkpoint['early_stop_callback_wait'] = self.early_stop_callback.wait
checkpoint['early_stop_callback_patience'] = self.early_stop_callback.patience
# save optimizers
optimizer_states = []
for i, optimizer in enumerate(self.optimizers):
optimizer_states.append(optimizer.state_dict())
checkpoint['optimizer_states'] = optimizer_states
# save lr schedulers
lr_schedulers = []
for i, scheduler in enumerate(self.lr_schedulers):
lr_schedulers.append(scheduler.state_dict())
checkpoint['lr_schedulers'] = lr_schedulers
# add the hparams and state_dict from the model
model = self.get_model()
checkpoint['state_dict'] = model.state_dict()
if hasattr(model, "hparams"):
checkpoint['hparams'] = vars(model.hparams)
else:
warnings.warn(
"Did not find hyperparameters at model.hparams. Saving checkpoint without"
" hyperparameters"
)
# give the model a chance to add a few things
model.on_save_checkpoint(checkpoint)
return checkpoint
# --------------------
# HPC IO
# --------------------
def restore_hpc_weights_if_needed(self, model):
"""
If there is a set of hpc weights, use as signal to restore model
:param model:
:return:
"""
did_restore = False
# look for hpc weights
folderpath = self.weights_save_path
if os.path.exists(folderpath):
files = os.listdir(folderpath)
hpc_weight_paths = [x for x in files if 'hpc_ckpt' in x]
# if hpc weights exist restore model
if len(hpc_weight_paths) > 0:
self.hpc_load(folderpath, self.on_gpu)
did_restore = True
return did_restore
def restore_training_state(self, checkpoint):
"""
Restore trainer state.
Model will get its change to update
:param checkpoint:
:return:
"""
if self.checkpoint_callback is not None and self.checkpoint_callback is not False:
self.checkpoint_callback.best = checkpoint['checkpoint_callback_best']
if self.early_stop_callback is not None and self.early_stop_callback is not False:
self.early_stop_callback.wait = checkpoint['early_stop_callback_wait']
self.early_stop_callback.patience = checkpoint['early_stop_callback_patience']
self.global_step = checkpoint['global_step']
self.current_epoch = checkpoint['epoch']
# restore the optimizers
optimizer_states = checkpoint['optimizer_states']
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
optimizer.load_state_dict(opt_state)
# move optimizer to GPU 1 weight at a time
# avoids OOM
if self.root_gpu is not None:
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda(self.root_gpu)
# restore the lr schedulers
lr_schedulers = checkpoint['lr_schedulers']
for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers):
scheduler.load_state_dict(lrs_state)
# ----------------------------------
# PRIVATE OPS
# ----------------------------------
def hpc_save(self, folderpath, logger):
# make sure the checkpoint folder exists
os.makedirs(folderpath, exist_ok=True)
# save logger to make sure we get all the metrics
logger.save()
ckpt_number = self.max_ckpt_in_folder(folderpath) + 1
if not os.path.exists(folderpath):
os.makedirs(folderpath, exist_ok=True)
filepath = '{}/hpc_ckpt_{}.ckpt'.format(folderpath, ckpt_number)
# give model a chance to do something on hpc_save
model = self.get_model()
checkpoint = self.dump_checkpoint()
model.on_hpc_save(checkpoint)
# do the actual save
# TODO: fix for anything with multiprocess DP, DDP, DDP2
try:
torch.save(checkpoint, filepath)
except AttributeError:
if 'hparams' in checkpoint:
del checkpoint['hparams']
torch.save(checkpoint, filepath)
return filepath
def hpc_load(self, folderpath, on_gpu):
filepath = '{}/hpc_ckpt_{}.ckpt'.format(folderpath, self.max_ckpt_in_folder(folderpath))
# load on CPU first
checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage)
# load model state
model = self.get_model()
# load the state_dict on the model automatically
model.load_state_dict(checkpoint['state_dict'])
if self.root_gpu is not None:
model.cuda(self.root_gpu)
# load training state (affects trainer only)
self.restore_training_state(checkpoint)
# call model hook
model.on_hpc_load(checkpoint)
logging.info(f'restored hpc model from: {filepath}')
def max_ckpt_in_folder(self, path, name_key='ckpt_'):
files = os.listdir(path)
files = [x for x in files if name_key in x]
if len(files) == 0:
return 0
ckpt_vs = []
for name in files:
name = name.split(name_key)[-1]
name = re.sub('[^0-9]', '', name)
ckpt_vs.append(int(name))
return max(ckpt_vs)
def load_hparams_from_tags_csv(tags_csv):
from argparse import Namespace
import pandas as pd
tags_df = pd.read_csv(tags_csv)
dic = tags_df.to_dict(orient='records')
ns_dict = {row['key']: convert(row['value']) for row in dic}
ns = Namespace(**ns_dict)
return ns
def convert(val):
constructors = [int, float, str]
if type(val) is str:
if val.lower() == 'true':
return True
if val.lower() == 'false':
return False
for c in constructors:
try:
return c(val)
except ValueError:
pass
return val