-
Notifications
You must be signed in to change notification settings - Fork 3.4k
/
Copy pathdp_mixin.py
526 lines (382 loc) · 17.1 KB
/
dp_mixin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
"""
Lightning makes multi-gpu training and 16 bit training trivial.
.. note:: None of the flags below require changing anything about your lightningModel definition.
Choosing a backend
==================
Lightning supports two backends. DataParallel and DistributedDataParallel.
Both can be used for single-node multi-GPU training.
For multi-node training you must use DistributedDataParallel.
DataParallel (dp)
-----------------
Splits a batch across multiple GPUs on the same node. Cannot be used for multi-node training.
DistributedDataParallel (ddp)
-----------------------------
Trains a copy of the model on each GPU and only syncs gradients. If used with DistributedSampler, each GPU trains
on a subset of the full dataset.
DistributedDataParallel-2 (ddp2)
--------------------------------
Works like DDP, except each node trains a single copy of the model using ALL GPUs on that node.
Very useful when dealing with negative samples, etc...
You can toggle between each mode by setting this flag.
.. code-block:: python
# DEFAULT (when using single GPU or no GPUs)
trainer = Trainer(distributed_backend=None)
# Change to DataParallel (gpus > 1)
trainer = Trainer(distributed_backend='dp')
# change to distributed data parallel (gpus > 1)
trainer = Trainer(distributed_backend='ddp')
# change to distributed data parallel (gpus > 1)
trainer = Trainer(distributed_backend='ddp2')
If you request multiple nodes, the back-end will auto-switch to ddp.
We recommend you use DistributedDataparallel even for single-node multi-GPU training.
It is MUCH faster than DP but *may* have configuration issues depending on your cluster.
For a deeper understanding of what lightning is doing, feel free to read this
`guide <https://medium.com/@_willfalcon/9-tips-for-training-lightning-fast-neural-networks-in-pytorch-8e63a502f565>`_.
Distributed and 16-bit precision
--------------------------------
Due to an issue with apex and DistributedDataParallel (PyTorch and NVIDIA issue), Lightning does
not allow 16-bit and DP training. We tried to get this to work, but it's an issue on their end.
Below are the possible configurations we support.
+-------+---------+----+-----+---------+------------------------------------------------------------+
| 1 GPU | 1+ GPUs | DP | DDP | 16-bit | command |
+=======+=========+====+=====+=========+============================================================+
| Y | | | | | `Trainer(gpus=1)` |
+-------+---------+----+-----+---------+------------------------------------------------------------+
| Y | | | | Y | `Trainer(gpus=1, use_amp=True)` |
+-------+---------+----+-----+---------+------------------------------------------------------------+
| | Y | Y | | | `Trainer(gpus=k, distributed_backend='dp')` |
+-------+---------+----+-----+---------+------------------------------------------------------------+
| | Y | | Y | | `Trainer(gpus=k, distributed_backend='ddp')` |
+-------+---------+----+-----+---------+------------------------------------------------------------+
| | Y | | Y | Y | `Trainer(gpus=k, distributed_backend='ddp', use_amp=True)` |
+-------+---------+----+-----+---------+------------------------------------------------------------+
You also have the option of specifying which GPUs to use by passing a list:
.. code-block:: python
# DEFAULT (int) specifies how many GPUs to use.
Trainer(gpus=k)
# Above is equivalent to
Trainer(gpus=list(range(k)))
# You specify which GPUs (don't use if running on cluster)
Trainer(gpus=[0, 1])
# can also be a string
Trainer(gpus='0, 1')
# can also be -1 or '-1', this uses all available GPUs
# this is equivalent to list(range(torch.cuda.available_devices()))
Trainer(gpus=-1)
CUDA flags
----------
CUDA flags make certain GPUs visible to your script.
Lightning sets these for you automatically, there's NO NEED to do this yourself.
.. code-block:: python
# lightning will set according to what you give the trainer
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
However, when using a cluster, Lightning will NOT set these flags (and you should not either).
SLURM will set these for you.
16-bit mixed precision
----------------------
16 bit precision can cut your memory footprint by half. If using volta architecture GPUs
it can give a dramatic training speed-up as well.
First, install apex (if install fails, look `here <https://github.com/NVIDIA/apex>`_::
$ git clone https://github.com/NVIDIA/apex
$ cd apex
# ------------------------
# OPTIONAL: on your cluster you might need to load cuda 10 or 9
# depending on how you installed PyTorch
# see available modules
module avail
# load correct cuda before install
module load cuda-10.0
# ------------------------
# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
then set this use_amp to True.::
# DEFAULT
trainer = Trainer(amp_level='O2', use_amp=False)
Single-gpu
----------
Make sure you're on a GPU machine.::
# DEFAULT
trainer = Trainer(gpus=1)
Multi-gpu
---------
Make sure you're on a GPU machine. You can set as many GPUs as you want.
In this setting, the model will run on all 8 GPUs at once using DataParallel under the hood.
.. code-block:: python
# to use DataParallel
trainer = Trainer(gpus=8, distributed_backend='dp')
# RECOMMENDED use DistributedDataParallel
trainer = Trainer(gpus=8, distributed_backend='ddp')
Multi-node
----------
Multi-node training is easily done by specifying these flags.
.. code-block:: python
# train on 12*8 GPUs
trainer = Trainer(gpus=8, nb_gpu_nodes=12, distributed_backend='ddp')
You must configure your job submission script correctly for the trainer to work.
Here is an example script for the above trainer configuration.
.. code-block:: bash
#!/bin/bash -l
# SLURM SUBMIT SCRIPT
#SBATCH --nodes=12
#SBATCH --gres=gpu:8
#SBATCH --ntasks-per-node=8
#SBATCH --mem=0
#SBATCH --time=0-02:00:00
# activate conda env
conda activate my_env
# -------------------------
# OPTIONAL
# -------------------------
# debugging flags (optional)
# export NCCL_DEBUG=INFO
# export PYTHONFAULTHANDLER=1
# PyTorch comes with prebuilt NCCL support... but if you have issues with it
# you might need to load the latest version from your modules
# module load NCCL/2.4.7-1-cuda.10.0
# on your cluster you might need these:
# set the network interface
# export NCCL_SOCKET_IFNAME=^docker0,lo
# -------------------------
# random port between 12k and 20k
export MASTER_PORT=$((12000 + RANDOM % 20000))
# run script from above
python my_main_file.py
.. note:: When running in DDP mode, any errors in your code will show up as an NCCL issue.
Set the `NCCL_DEBUG=INFO` flag to see the ACTUAL error.
Finally, make sure to add a distributed sampler to your dataset. The distributed sampler copies a
portion of your dataset onto each GPU. (World_size = gpus_per_node * nb_nodes).
.. code-block:: python
# ie: this:
dataset = myDataset()
dataloader = Dataloader(dataset)
# becomes:
dataset = myDataset()
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
dataloader = Dataloader(dataset, sampler=dist_sampler)
Auto-slurm-job-submission
-------------------------
Instead of manually building SLURM scripts, you can use the
`SlurmCluster object <https://williamfalcon.github.io/test-tube/hpc/SlurmCluster>`_
to do this for you. The SlurmCluster can also run a grid search if you pass
in a `HyperOptArgumentParser
<https://williamfalcon.github.io/test-tube/hyperparameter_optimization/HyperOptArgumentParser>`_.
Here is an example where you run a grid search of 9 combinations of hyperparams.
The full examples are `here
<https://github.com/williamFalcon/pytorch-lightning/tree/master/pl_examples/new_project_templates/multi_node_examples>`_.
.. code-block:: python
# grid search 3 values of learning rate and 3 values of number of layers for your net
# this generates 9 experiments (lr=1e-3, layers=16), (lr=1e-3, layers=32),
# (lr=1e-3, layers=64), ... (lr=1e-1, layers=64)
parser = HyperOptArgumentParser(strategy='grid_search', add_help=False)
parser.opt_list('--learning_rate', default=0.001, type=float,
options=[1e-3, 1e-2, 1e-1], tunable=True)
parser.opt_list('--layers', default=1, type=float, options=[16, 32, 64], tunable=True)
hyperparams = parser.parse_args()
# Slurm cluster submits 9 jobs, each with a set of hyperparams
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path='/some/path/to/save',
)
# OPTIONAL FLAGS WHICH MAY BE CLUSTER DEPENDENT
# which interface your nodes use for communication
cluster.add_command('export NCCL_SOCKET_IFNAME=^docker0,lo')
# see output of the NCCL connection process
# NCCL is how the nodes talk to each other
cluster.add_command('export NCCL_DEBUG=INFO')
# setting a master port here is a good idea.
cluster.add_command('export MASTER_PORT=%r' % PORT)
# ************** DON'T FORGET THIS ***************
# MUST load the latest NCCL version
cluster.load_modules(['NCCL/2.4.7-1-cuda.10.0'])
# configure cluster
cluster.per_experiment_nb_nodes = 12
cluster.per_experiment_nb_gpus = 8
cluster.add_slurm_cmd(cmd='ntasks-per-node', value=8, comment='1 task per gpu')
# submit a script with 9 combinations of hyper params
# (lr=1e-3, layers=16), (lr=1e-3, layers=32), (lr=1e-3, layers=64), ... (lr=1e-1, layers=64)
cluster.optimize_parallel_cluster_gpu(
main,
nb_trials=9, # how many permutations of the grid search to run
job_name='name_for_squeue'
)
The other option is that you generate scripts on your own via a bash command or use another library...
Self-balancing architecture
---------------------------
Here lightning distributes parts of your module across available GPUs to optimize for speed and memory.
"""
import torch
from pytorch_lightning.overrides.data_parallel import (
LightningDistributedDataParallel,
LightningDataParallel,
)
from pytorch_lightning.utilities.debugging import MisconfigurationException
try:
from apex import amp
APEX_AVAILABLE = True
except ImportError:
APEX_AVAILABLE = False
class TrainerDPMixin(object):
def copy_trainer_model_properties(self, model):
if isinstance(model, LightningDataParallel):
ref_model = model.module
elif isinstance(model, LightningDistributedDataParallel):
ref_model = model.module
else:
ref_model = model
for m in [model, ref_model]:
m.trainer = self
m.on_gpu = self.on_gpu
m.use_dp = self.use_dp
m.use_ddp2 = self.use_ddp2
m.use_ddp = self.use_ddp
m.use_amp = self.use_amp
m.testing = self.testing
m.single_gpu = self.single_gpu
def transfer_batch_to_gpu(self, batch, gpu_id):
# base case: object can be directly moved using `cuda` or `to`
if callable(getattr(batch, 'cuda', None)):
return batch.cuda(gpu_id)
elif callable(getattr(batch, 'to', None)):
return batch.to(torch.device('cuda', gpu_id))
# when list
elif isinstance(batch, list):
for i, x in enumerate(batch):
batch[i] = self.transfer_batch_to_gpu(x, gpu_id)
return batch
# when tuple
elif isinstance(batch, tuple):
batch = list(batch)
for i, x in enumerate(batch):
batch[i] = self.transfer_batch_to_gpu(x, gpu_id)
return tuple(batch)
# when dict
elif isinstance(batch, dict):
for k, v in batch.items():
batch[k] = self.transfer_batch_to_gpu(v, gpu_id)
return batch
# nothing matches, return the value as is without transform
return batch
def single_gpu_train(self, model):
model.cuda(self.root_gpu)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers())
if self.use_amp:
# An example
model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level)
self.optimizers = optimizers
self.run_pretrain_routine(model)
def dp_train(self, model):
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers())
model.cuda(self.root_gpu)
# check for this bug (amp + dp + !01 doesn't work)
# https://github.com/NVIDIA/apex/issues/227
if self.use_dp and self.use_amp:
if self.amp_level == 'O2':
m = f"""
Amp level {self.amp_level} with DataParallel is not supported.
See this note from NVIDIA for more info: https://github.com/NVIDIA/apex/issues/227.
We recommend you switch to ddp if you want to use amp
"""
raise MisconfigurationException(m)
else:
model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level)
# create list of device ids
device_ids = self.data_parallel_device_ids
if type(device_ids) is int:
device_ids = list(range(device_ids))
model = LightningDataParallel(model, device_ids=device_ids)
self.run_pretrain_routine(model)
def normalize_parse_gpu_string_input(s):
if type(s) is str:
if s == '-1':
return -1
else:
return [int(x.strip()) for x in s.split(',')]
else:
return s
def get_all_available_gpus():
"""
:return: a list of all available gpus
"""
return list(range(torch.cuda.device_count()))
def check_gpus_data_type(gpus):
"""
:param gpus: gpus parameter as passed to the Trainer
Function checks that it is one of: None, Int, String or List
Throws otherwise
:return: return unmodified gpus variable
"""
if (gpus is not None and
type(gpus) is not int and
type(gpus) is not str and
type(gpus) is not list): # noqa E129
raise MisconfigurationException("GPUs must be int, string or list of ints or None.")
def normalize_parse_gpu_input_to_list(gpus):
assert gpus is not None
if isinstance(gpus, list):
return gpus
else: # must be an int
if not gpus: # gpus==0
return None
elif gpus == -1:
return get_all_available_gpus()
else:
return list(range(gpus))
def sanitize_gpu_ids(gpus):
"""
:param gpus: list of ints corresponding to GPU indices
Checks that each of the GPUs in the list is actually available.
Throws if any of the GPUs is not available.
:return: unmodified gpus variable
"""
all_available_gpus = get_all_available_gpus()
for gpu in gpus:
if gpu not in all_available_gpus:
message = f"""
You requested GPUs: {gpus}
But your machine only has: {all_available_gpus}
"""
raise MisconfigurationException(message)
return gpus
def parse_gpu_ids(gpus):
"""
:param gpus: Int, string or list
An int -1 or string '-1' indicate that all available GPUs should be used.
A list of ints or a string containing list of comma separated integers
indicates specific GPUs to use
An int 0 means that no GPUs should be used
Any int N > 0 indicates that GPUs [0..N) should be used.
:return: List of gpus to be used
If no GPUs are available but the value of gpus variable indicates request for GPUs
then a misconfiguration exception is raised.
"""
# Check that gpus param is None, Int, String or List
check_gpus_data_type(gpus)
# Handle the case when no gpus are requested
if gpus is None or type(gpus) is int and gpus == 0:
return None
# We know user requested GPUs therefore if some of the
# requested GPUs are not available an exception is thrown.
gpus = normalize_parse_gpu_string_input(gpus)
gpus = normalize_parse_gpu_input_to_list(gpus)
gpus = sanitize_gpu_ids(gpus)
if not gpus:
raise MisconfigurationException("GPUs requested but non are available.")
return gpus
def determine_root_gpu_device(gpus):
"""
:param gpus: non empty list of ints representing which gpus to use
:return: designated root GPU device
"""
if gpus is None:
return None
assert isinstance(gpus, list), "gpus should be a list"
assert len(gpus), "gpus should be a non empty list"
# set root gpu
root_gpu = gpus[0]
return root_gpu