-
Notifications
You must be signed in to change notification settings - Fork 205
/
dpgan_instructor.py
170 lines (141 loc) · 7.08 KB
/
dpgan_instructor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# -*- coding: utf-8 -*-
# @Author : William
# @Project : TextGAN-william
# @FileName : dpgan_instructor.py
# @Time : Created at 2019/12/21
# @Blog : http://zhiweil.ml/
# @Description :
# Copyrights (C) 2018. All Rights Reserved.
import torch
import torch.optim as optim
import config as cfg
from instructor.real_data.instructor import BasicInstructor
from models.DPGAN_D import DPGAN_D
from models.DPGAN_G import DPGAN_G
class DPGANInstructor(BasicInstructor):
def __init__(self, opt):
super(DPGANInstructor, self).__init__(opt)
# generator, discriminator
self.gen = DPGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len,
cfg.padding_idx, gpu=cfg.CUDA)
self.dis = DPGAN_D(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len,
cfg.padding_idx, gpu=cfg.CUDA)
self.init_model()
# Optimizer
self.gen_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr)
self.gen_adv_opt = optim.Adam(self.gen.parameters(), lr=cfg.gen_lr)
self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr)
def _run(self):
# ===PRE-TRAINING===
# TRAIN GENERATOR
if not cfg.gen_pretrain:
self.log.info('Starting Generator MLE Training...')
self.pretrain_generator(cfg.MLE_train_epoch)
if cfg.if_save and not cfg.if_test:
torch.save(self.gen.state_dict(), cfg.pretrained_gen_path)
print('Save pre-trained generator: {}'.format(cfg.pretrained_gen_path))
# # ===TRAIN DISCRIMINATOR====
if not cfg.dis_pretrain:
self.log.info('Starting Discriminator Training...')
self.train_discriminator(cfg.d_step, cfg.d_epoch, 'MLE')
if cfg.if_save and not cfg.if_test:
torch.save(self.dis.state_dict(), cfg.pretrained_dis_path)
print('Save pre-trained discriminator: {}'.format(cfg.pretrained_dis_path))
# ===ADVERSARIAL TRAINING===
self.log.info('Starting Adversarial Training...')
self.log.info('Initial generator: %s' % (self.cal_metrics(fmt_str=True)))
for adv_epoch in range(cfg.ADV_train_epoch):
self.log.info('-----\nADV EPOCH %d\n-----' % adv_epoch)
self.sig.update()
if self.sig.adv_sig:
self.adv_train_generator(cfg.ADV_g_step) # Generator
self.train_discriminator(cfg.ADV_d_step, cfg.ADV_d_epoch, 'ADV') # Discriminator
if adv_epoch % cfg.adv_log_step == 0 or adv_epoch == cfg.ADV_train_epoch - 1:
if cfg.if_save and not cfg.if_test:
self._save('ADV', adv_epoch)
else:
self.log.info('>>> Stop by adv_signal! Finishing adversarial training...')
break
def _test(self):
print('>>> Begin test...')
self._run()
pass
def pretrain_generator(self, epochs):
"""
Max Likelihood Pre-training for the generator
"""
for epoch in range(epochs):
self.sig.update()
if self.sig.pre_sig:
pre_loss = self.train_gen_epoch(self.gen, self.train_data.loader, self.mle_criterion, self.gen_opt)
# ===Test===
if epoch % cfg.pre_log_step == 0 or epoch == epochs - 1:
self.log.info(
'[MLE-GEN] epoch %d : pre_loss = %.4f, %s' % (epoch, pre_loss, self.cal_metrics(fmt_str=True)))
if cfg.if_save and not cfg.if_test:
self._save('MLE', epoch)
else:
self.log.info('>>> Stop by pre signal, skip to adversarial training...')
break
def adv_train_generator(self, g_step):
"""
The gen is trained using policy gradients, using the reward from the discriminator.
Training is done for num_batches batches.
"""
discount_rate = 1
total_g_loss = 0
dis_count_list = [discount_rate ** i for i in range(cfg.max_seq_len)]
dis_count_matrix = torch.Tensor(dis_count_list).unsqueeze(0).repeat(cfg.batch_size, 1)
if cfg.CUDA:
dis_count_matrix = dis_count_matrix.cuda()
for step in range(g_step):
inp = self.train_data.random_batch()['input']
if cfg.CUDA:
inp = inp.cuda()
gen_sample, gen_sample_log_prob = self.gen.sample_teacher_forcing(inp)
word_reward, sentence_reward = self.dis.getReward(gen_sample)
sentence_reward = sentence_reward.repeat(1, cfg.max_seq_len)
reward_matrix = sentence_reward * word_reward * dis_count_matrix
for i in range(cfg.max_seq_len):
reward_matrix[:, i] = reward_matrix[:, i:].sum(dim=-1)
adv_loss = torch.sum(gen_sample_log_prob * reward_matrix)
self.optimize(self.gen_adv_opt, adv_loss, self.gen)
total_g_loss += adv_loss.item()
# ===Test===
self.log.info(
'[ADV-GEN]: g_loss = %.4f, %s' % (total_g_loss / (g_step * cfg.batch_size), self.cal_metrics(fmt_str=True)))
def train_discriminator(self, d_step, d_epoch, phase='MLE'):
"""
Training the discriminator on real_data_samples (positive) and generated samples from gen (negative).
Samples are drawn d_step times, and the discriminator is trained for d_epoch d_epoch.
"""
# prepare loader for validate
for step in range(d_step):
# prepare loader for training
pos_samples = self.train_data.target
neg_samples = self.gen.sample(pos_samples.size(0), 4 * cfg.batch_size)
pos_reward, neg_reward = 0, 0
for epoch in range(d_epoch):
# ===Train===
pos_reward, neg_reward = self.train_dis_epoch(self.dis, pos_samples, neg_samples, self.dis_opt)
# ===Test===
self.log.info('[%s-DIS] d_step %d: pos_reward = %.4f, neg_reward = %.4f,' % (
phase, step, pos_reward, neg_reward))
if cfg.if_save and not cfg.if_test:
torch.save(self.dis.state_dict(), cfg.pretrained_dis_path)
def eval_dis(self, model, pos_val, neg_val):
_, pos_reward = model.getReward(pos_val)
_, neg_reward = model.getReward(neg_val)
return torch.mean(pos_reward), torch.mean(neg_reward)
def train_dis_epoch(self, model, pos_samples, neg_samples, optimizer):
pos_reward, neg_reward = 0, 0
num_samples = pos_samples.size(0)
num_batch = num_samples // cfg.batch_size
for i in range(num_batch):
pos_sample = pos_samples[i * cfg.batch_size: (i + 1) * cfg.batch_size]
neg_sample = neg_samples[i * cfg.batch_size: (i + 1) * cfg.batch_size]
_, pos_reward = model.getReward(pos_sample)
_, neg_reward = model.getReward(neg_sample)
loss = -torch.mean(pos_reward) + torch.mean(neg_reward)
self.optimize(optimizer, loss, model)
return pos_reward.mean().item(), neg_reward.mean().item()