-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNatComm_Ozone_William_FromPublishedData.log
328 lines (282 loc) · 16.7 KB
/
NatComm_Ozone_William_FromPublishedData.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
------------------------------------------------------------------------------------
name: <unnamed>
log: F:\Dropbox\fuel mix and air quality follow on\data_repository\NatComm_O
> zone_William_FromPublishedData.log
log type: text
opened on: 20 Jun 2018, 18:41:44
.
. use "F:\Dropbox\fuel mix and air quality follow on\data_repository\archived_data_n
> atcomm_salvo_brito_artaxo_geiger.dta", clear
. * more time variables or indicators
. gen trend=(date-date("1-Nov-08","DM20Y"))/365.25
. foreach var of numlist 2(1)52 {
2. gen dv_week_`var'=(week==`var')
3. }
. capture gen dv_beltway_open=(date>=date("31-Mar-10","DM20Y"))
. capture gen dayofweek=dow(date)
. * "regular" weekdays, i.e., weekdays that are not public holidays nor do they fall
> on yearend vacation period
. * "vacation" weekdays, i.e., weekdays that are not public holidays but do fall on
> yearend vacation period
. * I do not consider July to be a "(school) vacation" period since traffic does not
> seem to change much according to the traffic authority; the last time the Rodizio
> was lifted for certain weeks of July was 2007
. gen dv_week_reg=(dayofweek>=1 & dayofweek<=5 & dv_pubhol==0 & dvyearendvacations==
> 0)
. gen dv_mon_reg=(dv_week_reg==1 & dayofweek==1)
. gen dv_tue_reg=(dv_week_reg==1 & dayofweek==2)
. gen dv_wed_reg=(dv_week_reg==1 & dayofweek==3)
. gen dv_thu_reg=(dv_week_reg==1 & dayofweek==4)
. gen dv_fri_reg=(dv_week_reg==1 & dayofweek==5)
. assert dv_mon_reg+dv_tue_reg+dv_wed_reg+dv_thu_reg+dv_fri_reg==dv_week_reg
. gen dv_week_vac=(dayofweek>=1 & dayofweek<=5 & dv_pubhol==0 & dvyearendvacations==
> 1)
. gen dv_sat_reg=(dayofweek==6 & dv_pubhol==0 & dvyearendvacations==0)
. gen dv_sat_vac=(dayofweek==6 & dv_pubhol==0 & dvyearendvacations==1)
. gen dv_sun_reg=(dayofweek==0 & dv_pubhol==0 & dvyearendvacations==0)
. gen dv_sun_vac=(dayofweek==0 & dv_pubhol==0 & dvyearendvacations==1)
. assert dv_week_reg+dv_week_vac+dv_sat_reg+dv_sat_vac+dv_sun_reg+dv_sun_vac+dv_pubh
> ol==1
. gen dv_sun_or_pubhol=(dayofweek==0 | dv_pubhol==1)
. assert dv_mon_reg+dv_tue_reg+dv_wed_reg+dv_thu_reg+dv_fri_reg+dv_week_vac+dv_sat_r
> eg+dv_sat_vac+dv_sun_or_pubhol==1
.
. * use traffic in the morning rush hours 07:00 to 11:00; also thermal inversion dat
> a recorded at 9am
. foreach var in congestion_city congestion_region {
2. capture drop temp
3. gen temp=`var' if hour>=7&hour<=11
4. bysort siteid date: egen `var'_am=mean(temp)
5. }
(381,444 missing values generated)
(381,444 missing values generated)
. /*
> foreach var in dv_ti_0to199m dv_ti_200to499m {
> capture drop temp
> gen temp=`var' if hour==9
> bysort siteid date: egen `var'_9am=mean(temp)
> }
> */
.
. gen dv_congestion_city_am_0_20=(congestion_city_am>=0&congestion_city_am<20)
. gen dv_congestion_city_am_20_50=(congestion_city_am>=20&congestion_city_am<50)
. gen dv_congestion_city_am_50_80=(congestion_city_am>=50&congestion_city_am<80)
. gen dv_congestion_city_am_80_200=(congestion_city_am>=80&congestion_city_am<200)
. assert dv_congestion_city_am_0_20+dv_congestion_city_am_20_50+dv_congestion_city_a
> m_50_80+dv_congestion_city_am_80_200==1 if (month>=10|month<=5) & o3_mass_conc~=.
.
. gen dv_congestion_region_am_0_4=(congestion_region_am>=0&congestion_region_am<4)
. gen dv_congestion_region_am_4_11=(congestion_region_am>=4&congestion_region_am<11)
. gen dv_congestion_region_am_11_18=(congestion_region_am>=11&congestion_region_am<1
> 8)
. gen dv_congestion_region_am_18_60=(congestion_region_am>=18&congestion_region_am<6
> 0)
. assert dv_congestion_region_am_0_4+dv_congestion_region_am_4_11+dv_congestion_regi
> on_am_11_18+dv_congestion_region_am_18_60==1 if (month>=10|month<=5) & o3_mass_con
> c~=.
.
. keep if $hoursforreg
(381,444 observations deleted)
.
. collapse (mean) o3_mass_conc share_gas trend dv_week_2-dv_week_52 dv_mon_reg dv_tu
> e_reg dv_wed_reg dv_thu_reg dv_fri_reg dv_week_vac dv_sat_reg dv_sat_vac dv_sun_va
> c dv_pubhol ///
> rd tp hm ws pp dv_ti_0to199m_9am dv_ti_200to499m_9am dv_congestion_*_am_*
> _* dv_beltway_open month, by(date siteid)
.
. gen dv_pp_0_0=(pp==0) if pp~=.
(12 missing values generated)
. gen dv_pp_0_5=(pp>0&pp<.5) if pp~=.
(12 missing values generated)
. gen dv_pp_5_20=(pp>=.5&pp<2) if pp~=.
(12 missing values generated)
. gen dv_pp_20_150=(pp>=2&pp<15) if pp~=.
(12 missing values generated)
.
. reg o3_mass_conc share_gas i.siteid##c.trend dv_week_2-dv_week_52 dv_mon_reg dv_tu
> e_reg dv_wed_reg dv_thu_reg dv_fri_reg dv_week_vac dv_sat_reg dv_sat_vac dv_sun_va
> c dv_pubhol ///
> rd tp hm ws dv_pp_*_* dv_ti_0to199m_9am dv_ti_200to499m_9am dv_congestion_
> city_am_*_* dv_congestion_region_am_*_* i.siteid##i.dv_beltway_open if (month>=10|
> month<=5), robust cluster(date)
note: dv_week_23 omitted because of collinearity
note: dv_week_24 omitted because of collinearity
note: dv_week_25 omitted because of collinearity
note: dv_week_26 omitted because of collinearity
note: dv_week_27 omitted because of collinearity
note: dv_week_28 omitted because of collinearity
note: dv_week_29 omitted because of collinearity
note: dv_week_30 omitted because of collinearity
note: dv_week_31 omitted because of collinearity
note: dv_week_32 omitted because of collinearity
note: dv_week_33 omitted because of collinearity
note: dv_week_34 omitted because of collinearity
note: dv_week_35 omitted because of collinearity
note: dv_week_36 omitted because of collinearity
note: dv_week_37 omitted because of collinearity
note: dv_week_38 omitted because of collinearity
note: dv_week_39 omitted because of collinearity
note: dv_pp_20_150 omitted because of collinearity
note: dv_congestion_city_am_80_200 omitted because of collinearity
note: dv_congestion_region_am_18_60 omitted because of collinearity
Linear regression Number of obs = 13,203
F(95, 1177) = 131.87
Prob > F = 0.0000
R-squared = 0.7065
Root MSE = 19.672
(Std. Err. adjusted for 1,178 clusters in date)
-----------------------------------------------------------------------------------
| Robust
o3_mass_conc | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------+----------------------------------------------------------------
share_gas | -16.65661 4.424613 -3.76 0.000 -25.33762 -7.975602
|
siteid |
2 | 8.584548 .9973995 8.61 0.000 6.627669 10.54143
3 | 7.921394 .9058443 8.74 0.000 6.144144 9.698643
5 | 16.33153 .915992 17.83 0.000 14.53437 18.12869
6 | 2.038999 1.157524 1.76 0.078 -.2320407 4.31004
7 | 23.95201 1.255016 19.09 0.000 21.48969 26.41433
15 | -.7354527 1.106046 -0.66 0.506 -2.905495 1.434589
18 | 9.439122 1.624113 5.81 0.000 6.252641 12.6256
22 | 7.542719 1.497445 5.04 0.000 4.604761 10.48068
27 | -2.432383 1.091712 -2.23 0.026 -4.574301 -.2904646
29 | -6.766918 1.472221 -4.60 0.000 -9.655389 -3.878448
31 | 21.41032 1.061883 20.16 0.000 19.32692 23.49371
|
trend | -.1286734 .76203 -0.17 0.866 -1.623762 1.366415
|
siteid#c.trend |
2 | 1.718867 .421068 4.08 0.000 .8927391 2.544994
3 | 2.624714 .570543 4.60 0.000 1.505319 3.744109
5 | 1.61708 .5324207 3.04 0.002 .5724807 2.66168
6 | 3.288527 .5277889 6.23 0.000 2.253015 4.32404
7 | -6.268287 .6262592 -10.01 0.000 -7.496997 -5.039578
15 | .1048608 .655899 0.16 0.873 -1.182001 1.391722
18 | 2.088912 .7662306 2.73 0.007 .5855815 3.592242
22 | 1.892135 .8201878 2.31 0.021 .2829412 3.501328
27 | -2.021733 .6115366 -3.31 0.001 -3.221556 -.8219093
29 | 1.490835 .7902983 1.89 0.059 -.0597157 3.041386
31 | -4.323479 .624814 -6.92 0.000 -5.549353 -3.097606
|
dv_week_2 | 2.323886 4.762898 0.49 0.626 -7.020832 11.6686
dv_week_3 | 3.323678 4.358918 0.76 0.446 -5.228439 11.87579
dv_week_4 | 3.918589 4.636809 0.85 0.398 -5.178745 13.01592
dv_week_5 | 7.213274 4.916036 1.47 0.143 -2.431897 16.85845
dv_week_6 | 4.343955 4.598381 0.94 0.345 -4.677984 13.36589
dv_week_7 | 4.688969 4.194805 1.12 0.264 -3.541161 12.9191
dv_week_8 | 13.44205 4.610869 2.92 0.004 4.39561 22.48849
dv_week_9 | 8.800797 4.927299 1.79 0.074 -.8664724 18.46807
dv_week_10 | 9.839744 4.616907 2.13 0.033 .7814578 18.89803
dv_week_11 | 7.597716 4.259503 1.78 0.075 -.7593509 15.95478
dv_week_12 | 2.379949 4.185007 0.57 0.570 -5.830957 10.59086
dv_week_13 | 4.613851 4.158049 1.11 0.267 -3.544165 12.77187
dv_week_14 | 2.473282 4.381566 0.56 0.573 -6.123271 11.06983
dv_week_15 | -.5374546 4.445704 -0.12 0.904 -9.259844 8.184934
dv_week_16 | 5.633925 4.164674 1.35 0.176 -2.537087 13.80494
dv_week_17 | 3.297739 4.475579 0.74 0.461 -5.483265 12.07874
dv_week_18 | 10.2394 4.69829 2.18 0.030 1.02144 19.45736
dv_week_19 | 3.505469 4.567827 0.77 0.443 -5.456522 12.46746
dv_week_20 | 5.699312 4.744561 1.20 0.230 -3.609429 15.00805
dv_week_21 | -3.476134 4.511057 -0.77 0.441 -12.32674 5.374476
dv_week_22 | -2.471672 5.059729 -0.49 0.625 -12.39877 7.455422
dv_week_23 | 0 (omitted)
dv_week_24 | 0 (omitted)
dv_week_25 | 0 (omitted)
dv_week_26 | 0 (omitted)
dv_week_27 | 0 (omitted)
dv_week_28 | 0 (omitted)
dv_week_29 | 0 (omitted)
dv_week_30 | 0 (omitted)
dv_week_31 | 0 (omitted)
dv_week_32 | 0 (omitted)
dv_week_33 | 0 (omitted)
dv_week_34 | 0 (omitted)
dv_week_35 | 0 (omitted)
dv_week_36 | 0 (omitted)
dv_week_37 | 0 (omitted)
dv_week_38 | 0 (omitted)
dv_week_39 | 0 (omitted)
dv_week_40 | 22.70456 5.146815 4.41 0.000 12.60661 32.80252
dv_week_41 | 23.80355 4.462628 5.33 0.000 15.04796 32.55914
dv_week_42 | 21.31926 4.233441 5.04 0.000 13.01332 29.62519
dv_week_43 | 20.21103 4.494543 4.50 0.000 11.39282 29.02924
dv_week_44 | 20.95682 4.53256 4.62 0.000 12.06402 29.84962
dv_week_45 | 19.78246 5.231012 3.78 0.000 9.519306 30.0456
dv_week_46 | 8.882937 4.255954 2.09 0.037 .5328341 17.23304
dv_week_47 | 11.48987 4.187291 2.74 0.006 3.274482 19.70526
dv_week_48 | 11.49263 4.149168 2.77 0.006 3.352038 19.63322
dv_week_49 | 11.66493 4.255091 2.74 0.006 3.316523 20.01334
dv_week_50 | 11.95263 4.191595 2.85 0.004 3.728797 20.17646
dv_week_51 | 12.6897 4.678867 2.71 0.007 3.509845 21.86955
dv_week_52 | 5.700113 3.250349 1.75 0.080 -.6770113 12.07724
dv_mon_reg | -13.16978 3.349574 -3.93 0.000 -19.74158 -6.597974
dv_tue_reg | -13.26562 3.27638 -4.05 0.000 -19.69382 -6.837426
dv_wed_reg | -12.06929 3.262951 -3.70 0.000 -18.47113 -5.667436
dv_thu_reg | -14.21485 3.263083 -4.36 0.000 -20.61696 -7.812741
dv_fri_reg | -12.57439 3.41109 -3.69 0.000 -19.26688 -5.881893
dv_week_vac | -3.224478 4.16042 -0.78 0.438 -11.38715 4.938189
dv_sat_reg | -.865667 1.803574 -0.48 0.631 -4.404245 2.672911
dv_sat_vac | 4.570952 5.282061 0.87 0.387 -5.792354 14.93426
dv_sun_vac | 7.802505 6.434905 1.21 0.226 -4.822659 20.42767
dv_pubhol | -.5667023 2.299514 -0.25 0.805 -5.078307 3.944902
rd | .041705 .0036419 11.45 0.000 .0345597 .0488503
tp | 3.094179 .2151545 14.38 0.000 2.67205 3.516308
hm | -.4910184 .0631095 -7.78 0.000 -.6148381 -.3671988
ws | -13.15436 1.054909 -12.47 0.000 -15.22407 -11.08465
dv_pp_0_0 | 2.036812 3.829906 0.53 0.595 -5.477393 9.551018
dv_pp_0_5 | -.4359123 3.804684 -0.11 0.909 -7.900632 7.028807
dv_pp_5_20 | .9403632 4.051246 0.23 0.816 -7.008107 8.888833
dv_pp_20_150 | 0 (omitted)
dv_ti_0to199m_9am | .9135226 2.265017 0.40 0.687 -3.530398 5.357443
dv_ti_200to499m~m | 3.777729 1.202965 3.14 0.002 1.417533 6.137924
dv_congestion_~20 | -8.849355 3.322242 -2.66 0.008 -15.36753 -2.331178
dv_congestion_~50 | -6.16289 2.010671 -3.07 0.002 -10.10779 -2.21799
dv_congestion_~80 | -1.068314 1.574117 -0.68 0.497 -4.156703 2.020076
dv_congestion~200 | 0 (omitted)
dv_congestion_r~4 | 1.294627 1.192263 1.09 0.278 -1.044571 3.633825
dv_congestion_~11 | -.7211994 1.001644 -0.72 0.472 -2.686406 1.244007
dv_congestion_~18 | -.623317 .8776482 -0.71 0.478 -2.345247 1.098612
dv_congestion_~60 | 0 (omitted)
1.dv_beltway_open | 6.617638 2.063274 3.21 0.001 2.569532 10.66574
|
siteid#|
dv_beltway_open |
2 1 | -8.580209 1.274343 -6.73 0.000 -11.08045 -6.079971
3 1 | -9.792284 1.658665 -5.90 0.000 -13.04655 -6.538014
5 1 | 8.401633 1.564682 5.37 0.000 5.331755 11.47151
6 1 | -9.703149 1.588921 -6.11 0.000 -12.82058 -6.585715
7 1 | 16.00754 1.929586 8.30 0.000 12.22173 19.79335
15 1 | 7.671854 1.850115 4.15 0.000 4.041962 11.30175
18 1 | -5.755782 2.127199 -2.71 0.007 -9.929306 -1.582257
22 1 | 2.295921 2.392937 0.96 0.338 -2.398977 6.990819
27 1 | 12.37789 1.827907 6.77 0.000 8.791568 15.96421
29 1 | 2.418816 2.392235 1.01 0.312 -2.274705 7.112338
31 1 | 13.10743 1.769286 7.41 0.000 9.636123 16.57874
|
_cons | 16.96054 12.25759 1.38 0.167 -7.088625 41.00971
-----------------------------------------------------------------------------------
. summ o3_mass_conc if e(sample)
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
o3_mass_conc | 13,203 72.16164 36.1792 .6 279.4
.
. * impact of share of Gasoline E20/E25 in the flex fleet rising from 30 to 80% (poi
> nt estimate and standard error)
. disp _b[share_gas]*(.8-.3)
-8.3283054
. disp _se[share_gas]*(.8-.3)
2.2123064
.
. * note to William: these standard errors are too low; you need to account for samp
> ling variation in the predicted gasoline share using the published bootstrap sampl
> es
.
.
. log close
name: <unnamed>
log: F:\Dropbox\fuel mix and air quality follow on\data_repository\NatComm_O
> zone_William_FromPublishedData.log
log type: text
closed on: 20 Jun 2018, 18:41:54
------------------------------------------------------------------------------------