-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathslides.lhs
1780 lines (1270 loc) · 44.6 KB
/
slides.lhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Introduction
============
- *Recursion Schemes* are essentially programming patterns
- By structuring our programs in a well-defined way we can:
- communicate and reason about our programs
- reuse both code and ideas
- use a catalogue of theorems to optimise or prove properties
- identify and exploit opportunities for parallelism
- In this literal Haskell talk, inspired by\
*Origami progamming* [1], we'll attempt\
to understand the theory via some\
practical examples
\vspace{0.75in}
\begin{picture}(0,0)(0,0)
\put(200,10){\includegraphics[height=1.25in]{images/origami.jpg}}
\end{picture}
Overview
========
\begin{columns}
\column{0.55\textwidth}
\begin{itemize}
\item Foldable \& Traversable
\item Catamorphisms
\item Fixed points of Functors
\item Composing \& Combining Algebras
\item Working with fixed data-types
\item Anamorphisms \& Corecursion
\item Hylomorphisms
\item Paramorphisms
\end{itemize}
\column{0.45\textwidth}
\begin{itemize}
\item Compositional data-types
\item Monadic variants
\item Apomorphisms
\item Memoization
\item Zygomorphisms
\item Histomorphisms
\item Futumorphisms
\item Conclusion
\end{itemize}
\end{columns}
Language Pragmas
================
> {-# LANGUAGE DeriveFunctor #-}
> {-# LANGUAGE DeriveFoldable #-}
> {-# LANGUAGE DeriveTraversable #-}
> {-# LANGUAGE FlexibleContexts #-}
> {-# LANGUAGE FlexibleInstances #-}
> {-# LANGUAGE StandaloneDeriving #-}
> {-# LANGUAGE UndecidableInstances #-}
> {-# LANGUAGE ScopedTypeVariables #-}
> {-# LANGUAGE ViewPatterns #-}
> {-# LANGUAGE TypeOperators #-}
> {-# LANGUAGE TupleSections #-}
> {-# LANGUAGE RankNTypes #-}
> {-# LANGUAGE MultiParamTypeClasses #-}
> {-# LANGUAGE FunctionalDependencies #-}
Imports
=======
Haskell platform
----------------
> import Prelude hiding
> (mapM, sequence, replicate, lookup, foldr, length)
> import Control.Applicative
> (pure, many, empty, (<$>),(<*>),(<*),(*>),(<|>),(<$))
> import Control.Arrow ((&&&),(***),(|||), first, second)
> import Control.Monad hiding (mapM, sequence)
> import Control.Monad.Reader hiding (mapM, sequence)
> import Control.Monad.ST
> import Data.Foldable (Foldable)
> import qualified Data.Foldable as F
----
> import Data.List (break)
> import Data.Map (Map)
> import qualified Data.Map as M
> import Data.Set (Set)
> import qualified Data.Set as S
> import Data.Maybe
> import Data.Monoid
> import Data.Traversable
> import Numeric
>
----
Third-party Hackage packages
----------------------------
> import Data.Bool.Extras (bool)
> import Data.Hashable
> import Data.HashTable.Class (HashTable)
> import qualified Data.HashTable.ST.Cuckoo as C
> import qualified Data.HashTable.Class as H
> import Text.ParserCombinators.Parsec
> hiding (space, many, (<|>))
> import Text.PrettyPrint.Leijen
> (Doc, Pretty, (<+>), text, space, pretty)
> import qualified Text.PrettyPrint.Leijen as PP
Useful functions
================
- fan-out or _fork_ \footnote{defined more generally in Control.Arrow}
~~~{.haskell}
(&&&) :: (b -> c) -> (b -> c') -> b -> (c, c')
(f &&& g) x = (f x, g x)
~~~
- fan-in \footnotemark[\value{footnote}]
~~~{.haskell}
(|||) ::: (b -> d) -> (c -> d) -> Either b c -> d
(|||) = either
~~~
----
- function product \footnotemark[\value{footnote}]
~~~{.haskell}
(***) :: (b -> c) -> (b' -> c') -> (b, b') -> (c, c')
(f *** g) (x, y) = (f x, g y)
~~~
- generalised unzip for functors
> funzip :: Functor f => f (a, b) -> (f a, f b)
> funzip = fmap fst &&& fmap snd
Foldable
========
The Foldable class gives you the ability to process the elements of a structure one-at-a-time, discarding the shape.
- Intuitively: list-like fold methods
- Derivable using the `DeriveFoldable` language pragma
~~~{.haskell}
class Foldable t where
foldMap :: Monoid m => (a -> m) -> t a -> m
fold :: Monoid m => t m -> m
foldr :: (a -> b -> b) -> b -> t a -> b
foldl :: (a -> b -> a) -> a -> t b -> a
foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a
~~~
----
~~~{.haskell}
data Tree a = Empty | Leaf a | Node (Tree a) (Tree a)
instance Foldable Tree
foldMap f Empty = mempty
foldMap f (Leaf x) = f x
foldMap f (Node l r) = foldMap f l <> foldMap f r
count :: Foldable t => t a -> Int
count = getSum . foldMap (const $ Sum 1)
~~~
Traversable
===========
Traversable gives you the ability to traverse a structure from left-to-right, performing an effectful action on each element and preserving the shape.
- Intuitively: fmap with effects
- Derivable using the `DeriveTraversable` language pragma
- See _Applicative Programming with Effects_, by McBride and Paterson [2]
~~~{.haskell}
class (Functor t, Foldable t) => Traversable t where
traverse :: Applicative f =>
(a -> f b) -> t a -> f (t b)
sequenceA :: Applicative f => t (f a) -> f (t a)
mapM :: Monad m => (a -> m b) -> t a -> m (t b)
sequence :: Monad m => t (m a) -> m (t a)
~~~
----
~~~{.haskell}
instance Traversable Tree where
traverse f Empty = pure Empty
traverse f (Leaf x) = Leaf <$> f x
traverse f (Node k r) =
Node <$> traverse f l <*> traverse f r
~~~
Note:
- `mapM` and `sequence` generalize Prelude functions of the same names
- sequence can also be thought of as a generalised matrix transpose!
~~~{.haskell}
sequence :: Monad m => t (m a) -> m (t a)
sequence = mapM id
~~~
~~~
sequence [putStrLn "a", putStrLn "b"] :: IO [()]
~~~
----
What if we need to access the structure?
----------------------------------------
We need to work with a domain of (`f a`) instead of `a`
Catamorphisms
=============
A *catamorphism* (cata meaning “downwards”) is a generalisation of the concept of a fold.
- models the fundamental pattern of (internal) *iteration*
- for a list, it describes bracketing from the right
- for a tree, it describes a bottom-up traversal, i.e. children first
`foldr` from the Haskell Prelude is a specialised catamorphism:
~~~{.haskell}
foldr :: (a -> b -> b) -> z -> [a] -> [b]
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
~~~
---
- We can express the parameters used above in terms of a single
_F-algebra_ `f b -> b` over a functor `f` and carrier `b`
~~~{.haskell}
foldr :: (Maybe (a, b) -> b) -> [a] -> b
foldr alg [] = alg $ Nothing
foldr alg (x:xs) = alg $ Just (x, foldr alg xs)
~~~
----
- We could also factor out the `List a` to `Maybe (a, [a])` isomorphism
> foldr :: (Maybe (a, b) -> b) -> [a] -> b
> foldr alg = alg . fmap (id *** foldr alg) . unList
> where
> unList [] = Nothing
> unList (x:xs) = Just (x, xs)
> length :: [a] -> Int
> length = foldr alg where
> alg :: Maybe (a, Int) -> Int
> alg Nothing = 0
> alg (Just (_, xs)) = xs + 1
~~~
> length "foobar"
6
~~~
----
This definition of `foldr` can literally be read from the commutative diagram below.\footnote{The nodes represent types (objects) and the edges functions (morphisms).}
\vspace{0.2in}
\centerline{\resizebox{4in}{!}{%
\begin{tikzpicture}[auto, font=\small\sffamily]
\node (ffixf) at (0,2.75) {\bf\it Maybe (a, [a])};
\node (fixf) at (0,0) {\bf\it [a]};
\node (fa) at (4.5,2.75) {\bf\it Maybe (a, b)};
\node (a) at (4.5,0) {\bf\it b};
\draw[->] (ffixf) to node {\tiny fmap (id *** foldr alg)} (fa);
\draw[->] (fixf) to node {\tiny unList} (ffixf);
\draw[->] (fixf) to node [swap] {\tiny foldr alg} (a);
\draw[->] (fa) to node {\tiny alg} (a);
\end{tikzpicture}
}}
----
- To demonstrate the expressiveness of foldr, we can even write a left fold using an algebra with a higher-order carrier
> foldl :: forall a b. (b -> a -> b) -> [a] -> b -> b
> foldl f = foldr alg where
> alg :: Maybe (a, b -> b) -> (b -> b)
> alg Nothing = id
> alg (Just (x,xs)) = \r -> xs (f r x)
Fixed points of Functors
========================
An idea from category theory which gives:
- data-type generic functions
- compositional data
Fixed points are represented by the type:
> -- | the least fixpoint of functor f
> newtype Fix f = Fix { unFix :: f (Fix f) }
A functor `f` is a data-type of kind `* -> *` together
with an `fmap` function.
\centerline{$Fix \: f \cong f (f (f (f (f ... $ etc}
\begin{picture}(0,0)(0,0)
\put(210,110){\includegraphics[height=1in]{images/nuts-and-bolts.jpg}}
\end{picture}
----
Data-type generic programming
-----------------------------
- allows as to parametrise functions on the structure, or _shape_, of a data-type
- useful for large complex data-types, where boilerplate traversal code often dominates, especially when updating a small subset of constructors
- for recursion schemes, we can\
capture the pattern as a \
standalone combinator
\begin{picture}(0,0)(0,0)
\put(200,-35){\includegraphics[height=1.2in]{images/shapes.jpg}}
\end{picture}
----
Limitations
-----------
- The set of data-types that can be represented\
by means of Fix is limited to _regular_ data-types\footnote{
A data-type is regular if it does not contain function spaces
and if the type constructor arguments are the same on both sides
of the definition.}
- Nested data-types and mutually recursive\
data-types require higher-order approaches\footnote{More
specifically, we need to fix higher-order functors.}
\begin{picture}(0,0)(0,0)
\put(235,-60){\includegraphics[height=0.66in]{images/warning.jpg}}
\end{picture}
----
- In order to work with lists using a data-type generic `cata` combinator, we need a new “unfixed” type representation
> data ListF a r = C a r | N
- `ListF a r` is not an ordinary functor, but we can define a polymorphic functor instance for `ListF a`
> instance Functor (ListF a) where
> fmap f N = N
> fmap f (C x xs) = C x (f xs)
- we might also want a pattern functor for natural numbers!
> data NatF r = Succ r | Zero deriving Functor
----
Catamorphisms - revisited
-------------------------
- we would like to write foldr once for all data-types
- category theory shows us how to define it data-type generically for a functor fixed-point
~~~{.haskell}
cata :: Functor f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix
~~~
----
Catamorphism
------------
\vspace{0.2in}
\centerline{\resizebox{3in}{!}{%
\begin{tikzpicture}[node distance=2.75cm, auto, font=\small\sffamily]
\node (ffixf) {\bf\it f (Fix f)};
\node (fixf) [below of=ffixf] {\bf\it Fix f};
\node (fa) [right of=ffixf] {\bf\it f a};
\node (a) [right of=fixf] {\bf\it a};
\draw[->] (ffixf) to node {\tiny fmap (cata alg)} (fa);
\draw[->] (ffixf) to node [swap] {\tiny Fix} (fixf);
\draw[->] (fixf) to node [swap] {\tiny cata alg} (a);
\draw[->] (fa) to node {\tiny alg} (a);
\end{tikzpicture}
}}
----
The catamorphism-fusion law
----------------------------
The *catamorphism-fusion law* [3], arguably the most important law, can be used to transform the composition of a function with a catamorphism into single catamorphism, eliminating intermediate data structures.
$$h \: . \: f = g\: . \: fmap \: h \implies h \: . \: cata \: f = cata \: g$$
where
~~~{.haskell}
f :: f a -> a
g :: f b -> b
h :: a -> b
~~~
\begin{picture}(0,0)(0,0)
\put(225,0){\includegraphics[height=1in]{images/fusion.png}}
\end{picture}
----
Example: a simple expression language
-------------------------------------
> data ExprF r = Const Int
> | Var Id
> | Add r r
> | Mul r r
> | IfNeg r r r
> deriving ( Show, Eq, Ord, Functor
> , Foldable, Traversable )
> type Id = String
> type Expr = Fix ExprF
The *pattern functor* `ExprF` represents the structure of type `Expr`
The isomorphism between a data-type and its pattern functor
type is witnessed by the functions `Fix` and `unFix`
----
We can also conveniently derive instances for fixed functors, although
this does require the controversial `UndecidableInstances` extension,
amongst others.
> deriving instance Show (f (Fix f)) => Show (Fix f)
> deriving instance Eq (f (Fix f)) => Eq (Fix f)
> deriving instance Ord (f (Fix f)) => Ord (Fix f)
----
Example: evaluator with global environment
------------------------------------------
> type Env = Map Id Int
> eval :: Env -> Expr -> Maybe Int
> eval env = cata (evalAlg env)
> evalAlg :: Env -> ExprF (Maybe Int) -> Maybe Int
> evalAlg env = alg where
> alg (Const c) = pure c
> alg (Var i) = M.lookup i env
> alg (Add x y) = (+) <$> x <*> y
> alg (Mul x y) = (*) <$> x <*> y
> alg (IfNeg t x y) = t >>= bool x y . (<0)
----
An example expression
---------------------
> e1 = Fix (Mul
> (Fix (IfNeg
> (Fix (Mul (Fix (Const 1))
> (Fix (Var "a"))))
> (Fix (Add (Fix (Var "b"))
> (Fix (Const 0))))
> (Fix (Add (Fix (Var "b"))
> (Fix (Const 2))))))
> (Fix (Const 3)))
NB. the `Fix` boilerplate could be removed by defining "smart" constructors.
----
An example expression
---------------------
\vspace{0.2in}
\centerline{\hbox{%
\begin{tikzpicture}[]
\Tree [.Mul [.IfNeg [.Mul [.Const 1 ] [.Var a ] ] [.Add [.Var b ] [.Const 0 ] ] [.Add [.Var b ] [.Const 2 ] ] ] [.Const 3 ] ]
\end{tikzpicture}
}}
----
> testEnv :: Env
> testEnv = M.fromList [("a",1),("b",3)]
~~~
> eval testEnv e1
Just 9
~~~
----
Example: a pretty printer
-------------------------
> ppr :: Expr -> Doc
> ppr = cata pprAlg
>
> pprAlg :: ExprF Doc -> Doc
> pprAlg (Const c) = text $ show c
> pprAlg (Var i) = text i
> pprAlg (Add x y) = PP.parens $ x <+> text "+" <+> y
> pprAlg (Mul x y) = PP.parens $ x <+> text "*" <+> y
> pprAlg (IfNeg t x y) = PP.parens $ text "ifNeg" <+> t
> <+> text "then" <+> x
> <+> text "else" <+> y
~~~
> ppr e1
((ifNeg (1 * a) then (b + 0) else (b + 2)) * 3)
~~~
----
Example: collecting free variables
----------------------------------
> freeVars :: Expr -> Set Id
> freeVars = cata alg where
> alg :: ExprF (Set Id) -> Set Id
> alg (Var i) = S.singleton i
> alg e = F.fold e
~~~
> freeVars e1
fromList ["a","b"]
~~~
----
Example: substituting variables
-------------------------------
> substitute :: Map Id Expr -> Expr -> Expr
> substitute env = cata alg where
> alg :: ExprF Expr -> Expr
> alg e@(Var i) = fromMaybe (Fix e) $ M.lookup i env
> alg e = Fix e
~~~
> let sub = M.fromList [("b",Fix $ Var "a")]
> freeVars $ substitute sub e1
fromList ["a"]
~~~
Composing Algebras
==================
- It is **not** true in general that catamorphisms compose
- However, there is a very useful special case!
Example: an optimisation pipeline
---------------------------------
> optAdd :: ExprF Expr -> Expr
> optAdd (Add (Fix (Const 0)) e) = e
> optAdd (Add e (Fix (Const 0))) = e
> optAdd e = Fix e
>
> optMul :: ExprF Expr -> Expr
> optMul (Mul (Fix (Const 1)) e) = e
> optMul (Mul e (Fix (Const 1))) = e
> optMul e = Fix e
----
The following composition works, but involves two complete traversals:
> optimiseSlow :: Expr -> Expr
> optimiseSlow = cata optAdd . cata optMul
We need an algebra composition operator that gives us *short-cut fusion*:
~~~{.haskell}
cata f . cata g = cata (f `comp` g)
~~~
For the special case:
~~~{.haskell}
f :: f a -> a; g :: g (Fix f) -> Fix f
~~~~
for arbitrary functors `f` and `g`, this is simply: \
`comp x y = x . unFix . y`
----
We can now derive a more efficient optimise pipeline:\footnote{In practice, such a pipeline is likely to be iterated until an equality fixpoint is reached, hence efficiency is important.}
> optimiseFast :: Expr -> Expr
> optimiseFast = cata (optMul . unFix . optAdd)
We have just applied the *catamorphism compose law* [3], usually stated in the form:
~~~{.haskell}
f :: f a -> a
h :: g a -> f a
cata f . cata (Fix . h) = cata (f . h)
~~~
Combining Algebras
==================
- Algebras over the same functor but different carrier types can be combined as products, such that two or more catamorphisms are performed as one
Given the following two algebras,
~~~{.haskell}
f :: f a -> a; g :: f b -> b
~~~
we want an algebra of type `f (a, b) -> (a, b)`
- We can use the *banana-split theorem* [3]:
~~~{.haskell}
cata f &&& cata g =
cata ( f . fmap fst &&&
g . fmap snd )
~~~
\begin{picture}(0,0)(0,0)
\put(225,20){\includegraphics[height=0.8in]{images/banana-split.png}}
\end{picture}
----
- rewrite the product using `funzip`
> algProd :: Functor f =>
> (f a -> a) -> (f b -> b) ->
> f (a, b) -> (a, b)
> algProd f g = (f *** g) . funzip
- we can also combine two algebras over different functors but the same carrier type into a coproduct
> algCoprod :: (f a -> a) -> (g a -> a) ->
> Either (f a) (g a) -> a
> algCoprod = (|||)
Working with fixed data-types
=============================
We can use type classes and functional dependencies to transparently apply the isomorphism between the unfixed representation and the original fixed type, e.g. `[a]` for lists.
> class Functor f => Fixpoint f t | t -> f where
> inF :: f t -> t
> outF :: t -> f t
> cata :: Fixpoint f t => (f a -> a) -> t -> a
> cata alg = alg . fmap (cata alg) . outF
----
Some example `Fixpoint` instances
---------------------------------
> instance Functor f => Fixpoint f (Fix f) where
> inF = Fix
> outF = unFix
> instance Fixpoint (ListF a) [a] where
> inF N = []
> inF (C x xs) = x : xs
> outF [] = N
> outF (x:xs) = C x xs
> instance Fixpoint NatF Integer where
> inF Zero = 0
> inF (Succ n) = n + 1
> outF n | n > 0 = Succ (n - 1)
> | otherwise = Zero
Anamorphisms
============
An *anamorphism* (ana meaning “upwards”) is a generalisation of the concept of an unfold.
- The corecursive dual of catamorphisms
- produces streams and other regular structures from a seed
- `ana` for lists is unfoldr, view patterns help see the duality
~~~{.haskell}
foldr :: (Maybe (a, b) -> b) -> [a] -> b
foldr f [] = f $ Nothing
foldr f (x : xs) = f $ Just (x, foldr f xs)
~~~
> unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
> unfoldr f (f -> Nothing) = []
> unfoldr f (f -> Just (x, unfoldr f -> xs)) = x : xs
----
Example: replicate the supplied seed by a given number
------------------------------------------------------
> replicate :: Int -> a -> [a]
> replicate n x = unfoldr c n where
> c 0 = Nothing
> c n = Just (x, n-1)
~~~
> replicate 4 '*'
"****"
~~~
----
Example: split a list using a predicate
---------------------------------------
> linesBy :: (t -> Bool) -> [t] -> [[t]]
> linesBy p = unfoldr c where
> c [] = Nothing
> c xs = Just $ second (drop 1) $ break p xs
~~~
> linesBy (==',') "foo,bar,baz"
["foo","bar","baz"]
~~~
----
Example: merging lists
----------------------
Given two sorted lists, `mergeLists` merges them into one sorted list.
> mergeLists :: forall a. Ord a => [a] -> [a] -> [a]
> mergeLists = curry $ unfoldr c where
> c :: ([a], [a]) -> Maybe (a, ([a], [a]))
> c ([], []) = Nothing
> c ([], y:ys) = Just (y, ([], ys))
> c (x:xs, []) = Just (x, (xs, []))
> c (x:xs, y:ys) | x <= y = Just (x, (xs, y:ys))
> | x > y = Just (y, (x:xs, ys))
~~~
> mergeLists [1,4] [2,3,5]
[1,2,3,4,5]
~~~
----
Corecursion
-----------
An anamorphism is an example of *corecursion*, the dual of recursion. Corecursion produces (potentially infinite) codata, whereas ordinary recursion consumes (necessarily finite) data.
- Using `cata` or `ana` only, our program is guaranteed to terminate
- However, not every program can be written in terms of just `cata` or `ana`
----
There is no enforced distinction between data and codata in Haskell, so we can make use of `Fix` again\footnote{In total functional languages like Agda and Coq, we would be required to make this distinction.}
> -- | anamorphism
> ana :: Functor f => (a -> f a) -> a -> Fix f
> ana coalg = Fix . fmap (ana coalg) . coalg
However, it it often useful to try to enforce this distinction, especially when working with streams.
> -- | The greatest fixpoint of functor f
> newtype Cofix f = Cofix { unCofix :: f (Cofix f) }
> -- | an alternative anamorphism typed for codata
> ana' :: Functor f => (a -> f a) -> a -> Cofix f
> ana' coalg = Cofix . fmap (ana' coalg) . coalg
----
Anamorphism
-----------
\vspace{0.2in}
\centerline{\resizebox{3in}{!}{%
\begin{tikzpicture}[node distance=2.75cm, auto, font=\small\sffamily]
\node (ffixf) {\bf\it f (Cofix f)};
\node (fixf) [below of=ffixf] {\bf\it Cofix f};
\node (fa) [right of=ffixf] {\bf\it f a};
\node (a) [right of=fixf] {\bf\it a};
\draw[->] (fa) to node [swap] {\tiny fmap (ana coalg)} (ffixf);
\draw[->] (fixf) to node {\tiny unFix} (ffixf);
\draw[->] (a) to node [swap] {\tiny ana coalg} (fixf);
\draw[->] (a) to node [swap] {\tiny coalg} (fa);
\end{tikzpicture}
}}
----
Example: coinductive streams
----------------------------
> data StreamF a r = S a r deriving Show
> type Stream a = Cofix (StreamF a)
> instance Functor (StreamF a) where
> fmap f (S x xs) = S x (f xs)
stream constructor:
> consS x xs = Cofix (S x xs)
stream deconstructors:
> headS (unCofix -> (S x _ )) = x
> tailS (unCofix -> (S _ xs)) = xs
----
- the function `iterateS` generates an infinite stream using the supplied iterator and seed
> iterateS :: (a -> a) -> a -> Stream a
> iterateS f = ana' c where
> c x = S x (f x)
> s1 = iterateS (+1) 1
~~~
> takeS 6 $ s1
[1,2,3,4,5,6]
~~~
Hylomorphism
============
A *hylomorphism* is the composition of a catamorphism and an anamorphism.
- models *general recursion* (!)
- allows us to substitute any recursive control structure with a data structure
- a representation which easily allows us to exploit parallelism
> hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
> hylo g h = cata g . ana h
NB. hylomorphisms are **Turing complete**, so we have lost any termination guarantees.
----
To see the explicit recursion, `cata` and `ana` can be fused together via substitution and the fmap-fusion Functor law:
~~~{.haskell}
fmap p . fmap q = fmap (p . q)
~~~
Giving:
~~~{.haskell}
hylo f g = f . fmap (hylo f g) . g
~~~
NB. this transformation is the basis for *deforestation*, eliminating intermediate data structures.
- `cata` and `ana` could be defined simply as:
~~~{.haskell}
cata f = hylo f unFix
ana g = hylo Fix g
~~~~
----
Example: Merge sort
-------------------
We use a tree data-type to capture the divide-and-conquer pattern of recursion.
> data LTreeF a r = Leaf a | Bin r r
> merge :: Ord a => LTreeF a [a] -> [a]
> merge (Leaf x) = [x]
> merge (Bin xs ys) = mergeLists xs ys
>
> unflatten [x] = Leaf x
> unflatten (half -> (xs, ys)) = Bin xs ys
>
> half xs = splitAt (length xs `div` 2) xs
>
----
- Finally, we can implement merge-sort as a hylomorphism
> msort :: Ord a => [a] -> [a]
> msort = hylo merge unflatten
~~~
> msort [7,6,3,1,5,4,2]
[1,2,3,4,5,6,7]
~~~
\begin{picture}(0,0)(0,0)
\put(165,-50){\resizebox{2in}{!}{%
\begin{tikzpicture}[]
\Tree [.Bin [.Bin [.Leaf 7 ] [.Bin [.Leaf 6 ] [.Leaf 3 ] ] ] [.Bin [.Bin [.Leaf 1 ] [.Leaf 5 ] ] [.Bin [.Leaf 4 ] [.Leaf 2 ] ] ] ]
\end{tikzpicture}}}
\end{picture}
Paramorphisms
=============
A *paramorphism* (para meaning “beside”) is an extension of the concept of a catamorphism.
- models *primitive recursion* over an inductive type
- a convenient way of getting access to the original input structures
- very useful in practice!
For a pattern functor, a paramorphism is:
~~~{.haskell}
para :: Fixpoint f t => (f (a, t) -> a ) -> t -> a
para alg = fst . cata (alg &&& Fix . fmap snd)
~~~~
----
For better efficiency, we can modify the original cata definition:
> para :: Fixpoint f t => (f (a, t) -> a) -> t -> a
> para alg = alg . fmap (para alg &&& id) . outF
----
Example: computing the factorial
--------------------------------
- This is the classic example of primitive recursion
- The usual Haskell example `fact n = foldr (*) [1..n]` is actually an unfold followed by a fold
> fact :: Integer -> Integer
> fact = para alg where
> alg Zero = 1
> alg (Succ (f, n)) = f * (n + 1)
$$
\begin{array}{rcl}
0! & = & 1 \\
(n+1)! & = & n! * (n+1) \\
\end{array}
$$
~~~
> fact 10
3628800
~~~
----
Example: sliding window
-----------------------
> sliding :: Int -> [a] -> [[a]]
> sliding n = para alg where
> alg N = []