forked from facebookresearch/DPR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess_reader_data.py
48 lines (35 loc) · 1.61 KB
/
preprocess_reader_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Reader data preprocessor command line tool
"""
import argparse
import logging
from dpr.data.reader_data import convert_retriever_results
from dpr.models import init_tenzorizer
from dpr.options import print_args, add_encoder_params, add_reader_preprocessing_params, add_tokenizer_params
logger = logging.getLogger()
def main(args):
tensorizer = init_tenzorizer(args.encoder_model_type, args)
# disable auto-padding to save disk space of serialized files
tensorizer.set_pad_to_max(False)
convert_retriever_results(args.is_train_set, args.retriever_results, args.out_file, args.gold_passages_src,
tensorizer, args.num_workers)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_encoder_params(parser)
add_tokenizer_params(parser)
add_reader_preprocessing_params(parser)
parser.add_argument("--is_train_set", action='store_true',
help="If true, the data will be binarised for train model usage (split into ctx+ and ctx- \
and with answer spans selected)")
parser.add_argument("--retriever_results", required=True, type=str,
help="File with retriever results file(json format)")
parser.add_argument("--out_file", required=True, type=str, help="The file to write serialized results to")
args = parser.parse_args()
print_args(args)
main(args)