奇异值分解(SVD, Singular Value Decomposition):
提取信息的一种方法,可以把SVD看成是从噪声数据中抽取相关特征。从生物信息学到金融学,SVD是提出信息的强大工具。
* 优点:简化数据,去除噪声,提高算法的结果
* 缺点:数据的转换可能难以理解
* 使用的数据类型:数值型数据
信息检索-隐形语义检索(Lstent Semantic Indexing, LSI)或 隐形语义分析(Latent Semantic Analysis, LSA)
隐性语义索引:矩阵 = 文档 + 词语
推荐引擎
- 利用SVD从数据中构建一个主题空间。
- 再在该空间下计算其相似度。(从高维-低维空间的转化,在低维空间来计算相似度,SVD提升了推荐引擎的效率。)
图像压缩
例如:32*32=1024 => 32*2+2*1+32*2=130
(2*1表示去掉了除对角线的0), 几乎获得了10倍的压缩比。
矩阵分解
- 矩阵分解是将数据矩阵分解为多个独立部分的过程。
- 矩阵分解可以将原始矩阵表示成新的易于处理的形式,这种新形式时两个或多个矩阵的乘积。(类似代数中的因数分解)
- 举例:如何将12分解成两个数的乘积?(1,12)、(2,6)、(3,4)都是合理的答案。
SVD 是矩阵分解的一种类型,也是矩阵分解最常见的技术。
- SVD 将原始的数据集矩阵Data分解成三个矩阵U、∑、\(V^T\)
- 举例:如果原始矩阵 \(Data_{m*n}\) 是m行n列,
- \(U_{m*m}\) 表示m行m列
- \(∑_{m*n}\) 表示m行n列
- \(V^T_{n*n}\) 表示n行n列。
- 上述分解中会构建出一个矩阵∑,该矩阵只有对角元素,其他元素均为0(近似于0)。另一个惯例就是,∑的对角元素是从大到小排列的。这些对角元素称为奇异值,它们对应原始矩阵Data的奇异值。
- 奇异值与特征值(PCA数据中重要特征)是有关系的。这里的奇异值就是矩阵 \(Data * Date^T\) 特征值的平方根。
- 普遍的事实:在某个奇异值的数目(r个=>奇异值的平方和累加到总值的90%以上)之后,其他的奇异值都置为0(近似于0)。这意味着数据集中仅有r个重要特征,而其余特征则都是噪声或冗余特征。
基于协同过滤(collaborative filtering)的推荐引擎
- 利用Python 实现SVD(Numpy 有一个称为linalg的线性代数工具箱)
- 协同过滤:是通过将用户和其他用户的数据进行对比来实现推荐的。
- 当知道了两个用户或两个物品之间的相似度,我们就可以利用已有的数据来预测未知用户的喜好。
相似度计算
- inA, inB 对于的为列向量
- 欧氏距离:指在m维空间中两个点之间的真实距离,或者向量的自然长度(即改点到原点的距离)。二维或三维中的欧氏距离就是两点之间的实际距离。
- 相似度= 1/(1+欧式距离)
相似度= 1.0/(1.0 + la.norm(inA - inB))
- 物品对越相似,它们的相似度值就越大。
- 皮尔逊相关系数:度量的是两个向量之间的相似度。
- 相似度= 0.5 + 0.5*corrcoef() 【皮尔逊相关系数的取值范围从 -1 到 +1,通过函数0.5 + 0.5*corrcoef()这个函数计算,把值归一化到0到1之间】
相似度= 0.5 + 0.5 * corrcoef(inA, inB, rowvar = 0)[0][1]
- 相对欧氏距离的优势:它对用户评级的量级并不敏感。
- 余弦相似度:计算的是两个向量夹角的余弦值。
- 余弦值 = (A·B)/(||A||·||B||) 【余弦值的取值范围也在-1到+1之间】
- 相似度= 0.5 + 0.5*余弦值
相似度= 0.5 + 0.5*( float(inA.T*inB) / la.norm(inA)*la.norm(inB))
- 如果夹角为90度,则相似度为0;如果两个向量的方向相同,则相似度为1.0。
基于物品的相似度和基于用户的相似度:物品比较少则选择物品相似度,用户比较少则选择用户相似度。【矩阵还是小一点好计算】
推荐引擎的评价
- 采用交叉测试的方法。【就是将某些已知的评分值去掉,然后进行预测,最后计算预测值和真实值之间的差异】
- 推荐引擎评价的指标: 最小均方根误差(Root mean squared error, RMSE),也称标准误差(Standard error),就是计算均方误差的平均值然后取其平方根。
- 如果RMSE=1, 表示相差1个星级;如果RMSE=2.5, 表示相差2.5个星级。
餐馆菜肴推荐引擎-案例
- 推荐系统的工作过程:给定一个用户,系统会为此用户返回N个最好的推荐菜。
- 实现流程大致如下:
- 寻找用户没有评级的菜肴,即在用户-物品矩阵中的0值。
- 在用户没有评级的所有物品中,对每个物品预计一个可能的评级分数。这就是说:我们认为用户可能会对物品的打分(这就是相似度计算的初衷)。
- 对这些物品的评分从高到低进行排序,返回前N个物品。
- 现在我们来观测代码实现。
补充:基于内容(content-based)的推荐
- 通过各种标签来标记菜肴
- 将这些属性作为相似度计算所需要的数据
- 这就是:基于内容的推荐。
构建推荐引擎面临的挑战
-
问题
-
1)在大规模的数据集上,SVD分解会降低程序的速度
-
2)存在其他很多规模扩展性的挑战性问题,比如矩阵的表示方法和计算相似度得分消耗资源。
-
3)如何在缺乏数据时给出好的推荐-称为冷启动【简单说:用户不会喜欢一个无效的物品,而用户不喜欢的物品又无效。】
-
建议
-
1)在大型系统中,SVD分解(可以在程序调入时运行一次)每天运行一次或者其频率更低,并且还要离线运行。
-
2)在实际中,另一个普遍的做法就是离线计算并保存相似度得分。(物品相似度可能被用户重复的调用)
-
3)冷启动问题,解决方案就是将推荐看成是搜索问题,通过各种标签/属性特征进行
基于内容的推荐
。
- 作者:片刻 1988
- GitHub地址: https://github.com/apachecn/MachineLearning
- 版权声明:欢迎转载学习 => 请标注信息来源于 ApacheCN