-
Notifications
You must be signed in to change notification settings - Fork 6
/
DeepBeamAoaMixed.py
379 lines (316 loc) · 15.8 KB
/
DeepBeamAoaMixed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import argparse
import h5py
import json
import keras
import numpy as np
import pickle as pkl
import time
import os
from argparse import Namespace
from CustomModelCheckpoint import CustomModelCheckpoint
from DataGeneratorAoaCross import DataGeneratorCross
from keras import backend as K
from keras.callbacks import EarlyStopping
from keras.layers import Input, Dense, Flatten, Reshape, Lambda
from keras.layers.convolutional import Conv2D, MaxPooling2D, MaxPooling1D, Conv1D
from keras.models import Model
from keras.optimizers import Adam
from keras.models import model_from_json
from keras.callbacks import CSVLogger
from keras.utils import plot_model
from keras.utils.io_utils import HDF5Matrix
# from numba import njit, prange
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from Utils import *
from sklearn.metrics import confusion_matrix
class DeepBeamAoaMixed(object):
def __init__(self):
'''Initialize class variables.'''
self.args = self.parse_arguments()
if not os.path.exists(self.args.save_path):
os.makedirs(self.args.save_path)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = self.args.id_gpu
self.is_2d = False
self.is_1d = self.args.is_1d
self.num_beams = self.args.num_beams
self.num_blocks_per_frame = self.args.num_blocks_per_frame
self.how_many_blocks_per_frame = self.args.how_many_blocks_per_frame
self.num_samples_per_block = self.args.num_samples_per_block
self.num_frames_for_gain_tx_beam_pair = self.args.num_frames_for_gain_tx_beam_pair
self.num_gains = self.args.num_gains
self.num_angles = self.args.num_angles
self.train_perc = self.args.train_perc
self.valid_perc = self.args.valid_perc
self.test_perc = self.args.test_perc
self.kernel_size = self.args.kernel_size
self.save_best_only = True if self.args.save_best_only else False
print("Dir path: " + self.args.save_path)
if self.args.test_only:
self.test_chain()
else:
self.train_chain()
def train_chain(self):
if not os.path.exists(
os.path.join(
self.args.save_path,
self.args.bl_model_name
)
):
print('--------- Building model from scratch -----------')
if self.is_1d:
self.model = build_model_1d(
self.args.num_of_conv_layers,
self.args.num_of_kernels,
self.args.kernel_size,
self.args.num_of_dense_layers,
self.args.size_of_dense_layers,
self.args.how_many_blocks_per_frame,
self.args.num_samples_per_block,
self.args.num_beams
)
else:
self.model = build_model(
self.args.num_of_conv_layers,
self.args.num_of_kernels,
self.args.kernel_size,
self.args.num_of_dense_layers,
self.args.size_of_dense_layers,
self.args.how_many_blocks_per_frame,
self.args.num_samples_per_block,
self.args.num_beams
)
self.save_to_json()
else:
print('--------- Loading model from file -----------')
self.load_from_json()
self.load_data()
self.train()
self.test()
def test_chain(self):
self.load_from_json()
self.load_data()
self.test()
def load_data(self):
'''Load data from path into framework.'''
if not os.path.exists(self.args.save_path + '/indexes_DeepBeam.pkl'):
print('--------- Creating indexes and saving them in indexes.pkl -----------')
indexes = np.arange(
self.num_frames_for_gain_tx_beam_pair *
self.num_beams * self.num_gains * self.num_angles
)
train_idxs, valid_idxs, test_idxs = [], [], []
train, val = self.train_perc, self.train_perc + self.valid_perc
num_train = int(self.num_frames_for_gain_tx_beam_pair * train)
num_val = int(self.num_frames_for_gain_tx_beam_pair * val)
gains = [0, 1, 2]
if(self.args.snr == "low"):
gains = [0]
if(self.args.snr == "mid"):
gains = [1]
if(self.args.snr == "high"):
gains = [2]
for gain in gains:
for beam in range(self.num_beams):
for angle in range(self.num_angles):
start_idx =\
gain * self.num_beams * self.num_angles * self.num_frames_for_gain_tx_beam_pair +\
beam * self.num_angles * self.num_frames_for_gain_tx_beam_pair +\
angle * self.num_frames_for_gain_tx_beam_pair
train_idxs.extend(
indexes[start_idx: start_idx + num_train]
)
valid_idxs.extend(
indexes[start_idx + num_train: start_idx + num_val]
)
test_idxs.extend(
indexes[start_idx + num_val: start_idx +
self.num_frames_for_gain_tx_beam_pair]
)
self.train_indexes_BL = train_idxs
self.valid_indexes_BL = valid_idxs
self.test_indexes = test_idxs
# Saving the objects:
# Python 3: open(..., 'wb')
with open(self.args.save_path + '/indexes_DeepBeam.pkl', 'wb') as f:
pkl.dump([self.train_indexes_BL,
self.valid_indexes_BL,
self.test_indexes], f)
else:
# Python 3: open(..., 'rb') note that indexes
with open(self.args.save_path + "/indexes_DeepBeam.pkl", 'rb') as f:
data_loaded = pkl.load(f)
self.train_indexes_BL = data_loaded[0]
self.valid_indexes_BL = data_loaded[1]
self.test_indexes = data_loaded[2]
print('--------- Indexes check ----------')
print("Lenght of training: {} validation: {} testing: {}".format(
len(self.train_indexes_BL), len(self.valid_indexes_BL), len(self.test_indexes)))
print(len(self.train_indexes_BL) +
len(self.valid_indexes_BL) + len(self.test_indexes))
print('********************* Generating data for Baseline *********************')
self.train_generator_BL = DataGeneratorCross(
indexes=self.train_indexes_BL,
batch_size=self.args.batch_size,
data_path=self.args.datasets,
num_tx_beams=self.args.num_beams,
num_blocks_per_frame=self.num_blocks_per_frame,
num_samples_per_block=self.num_samples_per_block,
how_many_blocks_per_frame=self.how_many_blocks_per_frame,
shuffle=False,
is_2d=self.is_2d)
self.valid_generator_BL = DataGeneratorCross(
indexes=self.valid_indexes_BL,
batch_size=self.args.batch_size,
data_path=self.args.datasets,
num_tx_beams=self.args.num_beams,
num_blocks_per_frame=self.num_blocks_per_frame,
num_samples_per_block=self.num_samples_per_block,
how_many_blocks_per_frame=self.how_many_blocks_per_frame,
shuffle=False,
is_2d=self.is_2d)
print('********************* Generating testing data *********************')
self.test_generator = DataGeneratorCross(
indexes=self.test_indexes,
batch_size=self.args.batch_size,
data_path=self.args.datasets,
num_tx_beams=self.args.num_beams,
num_blocks_per_frame=self.num_blocks_per_frame,
num_samples_per_block=self.num_samples_per_block,
how_many_blocks_per_frame=self.how_many_blocks_per_frame,
is_2d=self.is_2d)
def train(self):
'''Train model through Keras framework.'''
print('*************** Training Model ***************')
optimizer = Adam(lr=0.0001)
self.model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
''' Set up callbacks '''
call_backs = []
checkpoint = CustomModelCheckpoint(
os.path.join(self.args.save_path, self.args.bl_model_name),
monitor=self.args.stop_param, verbose=1, save_best_only=self.save_best_only)
call_backs.append(checkpoint)
earlystop_callback = EarlyStopping(
monitor=self.args.stop_param, min_delta=0, patience=self.args.patience,
verbose=1, mode='auto')
call_backs.append(earlystop_callback)
csv_logger = CSVLogger(self.args.save_path +
"/train_history_log.csv", append=True)
call_backs.append(csv_logger)
start_time = time.time()
self.model.fit_generator(generator=self.train_generator_BL,
steps_per_epoch=self.args.max_steps if self.args.max_steps > 0 else None,
epochs=self.args.epochs,
validation_steps=len(
self.valid_generator_BL) // self.args.batch_size,
validation_data=self.valid_generator_BL,
shuffle=True,
callbacks=call_backs,
use_multiprocessing=False,
max_queue_size=100)
train_time = time.time() - start_time
print('Time to train model %0.3f s' % train_time)
self.best_model_path = checkpoint.best_path
def test(self):
optimizer = Adam(lr=0.0001)
self.model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
score = self.model.evaluate_generator(self.test_generator, verbose=1,
use_multiprocessing=False)
print('********************* Testing score ******************')
print(score)
f = open(self.args.save_path + "/accuracy.txt", "w")
f.write(str(score))
f.close()
def save_to_json(self):
self.model.summary()
model_json = self.model.to_json()
json_path = self.args.save_path + "/model_arch.json"
with open(json_path, "w") as json_file:
json_file.write(model_json)
print("Written model arch to " + json_path)
def load_from_json(self):
# load json and create model
json_file = open(self.args.save_path + "/model_arch.json", 'r')
loaded_model_json = json_file.read()
json_file.close()
self.model = model_from_json(loaded_model_json)
# load weights into new model
self.model.load_weights(self.args.save_path + "/DeepBeam_model.hdf5")
print("Loaded model from disk")
def parse_arguments(self):
'''Parse input user arguments.'''
parser = argparse.ArgumentParser(description='Train and Validation pipeline',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--max_steps', type=int, default=0,
help='Max number of batches. If 0, it uses the whole dataset')
parser.add_argument('--id_gpu', type=str, default=2,
help='GPU to use.')
parser.add_argument('--is_1d', type=int, default=0,
help='Build 1d model.')
parser.add_argument('--bl_model_name', type=str, default='DeepBeam_model.hdf5',
help='Name of baseline model.')
parser.add_argument('--snr', type=str, default='all',
help='SNR level (low, mid, high, all).')
parser.add_argument('--load_indexes', action='store_true',
help='Load indexes from external file. If False, you create and save them in "indexes.pkl".')
parser.add_argument('--train_cnn', action='store_true',
help='Train CNN.')
parser.add_argument('--save_best_only', type=int, default=1,
help='Save only best model during training.')
parser.add_argument('--num_beams', type=int, default=24,
help='Number of beams.')
parser.add_argument('--num_angles', type=int, default=3,
help='Number of angles.')
parser.add_argument('--test_only', type=int, default=0,
help='Perform only testing.')
parser.add_argument('--stop_param', type=str, default="val_acc",
help='Stop parameter to save model.')
parser.add_argument('--num_samples_per_block', type=int, default=2048,
help='Number of samples per block.')
parser.add_argument('--num_blocks_per_frame', type=int, default=15,
help='Number of blocks per frame.')
parser.add_argument('--how_many_blocks_per_frame', type=int, default=1,
help='Number of blocks per frame I take.')
parser.add_argument('--num_frames_for_gain_tx_beam_pair', type=int, default=10000,
help='How many frames we collected for each beam/gain pair.')
parser.add_argument('--is_2d_model', type=int, default=0,
help='Train a 1D model.')
parser.add_argument('--num_gains', type=int, default=3,
help='Number of different gains.')
parser.add_argument('--kernel_size', type=int, default=6,
help='Kernel size in the convolutional layers.')
parser.add_argument('--num_of_kernels', type=int, default=64,
help='Num of kernels in the convolutional layers.')
parser.add_argument('--num_of_conv_layers', type=int, default=6,
help='Num of conv layers.')
parser.add_argument('--num_of_dense_layers', type=int, default=2,
help='Num of dense layers.')
parser.add_argument('--size_of_dense_layers', type=int, default=128,
help='Size of dense layers.')
parser.add_argument('--train_perc', type=float, default=0.60,
help='Number of different gains.')
parser.add_argument('--valid_perc', type=float, default=0.15,
help='Number of different gains.')
parser.add_argument('--test_perc', type=float, default=0.25,
help='Number of different gains.')
parser.add_argument('--datasets',
nargs='+', type=str, help='List of datasets')
parser.add_argument('--save_path', type=str, default='./',
help='Path to save weights, model architecture, and logs.')
parser.add_argument('--data_path', type=str,
default='./',
help='Path to data.')
parser.add_argument('--patience', type=int, default=3,
help='Early stopping patience.')
parser.add_argument('--batch_size', type=int, default=32,
help='Batch size for model optimization.')
parser.add_argument('--epochs', type=int, default=25,
help='Number of epochs to train model.')
return parser.parse_args()
if __name__ == '__main__':
DeepBeamAoaMixed()