-
Notifications
You must be signed in to change notification settings - Fork 26
/
train_kd_segformer.py
531 lines (442 loc) · 26 KB
/
train_kd_segformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import argparse
import time
import datetime
import os
import shutil
import sys
cur_path = os.path.abspath(os.path.dirname(__file__))
root_path = os.path.split(cur_path)[0]
sys.path.append(root_path)
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from utils.distributed import *
from utils.logger import setup_logger
from utils.score import SegmentationMetric
from dataset.cityscapes import CSTrainValSet
from dataset.ade20k import ADETrainSet, ADEDataValSet
from dataset.camvid import CamvidTrainSet, CamvidValSet
from dataset.voc import VOCDataTrainSet, VOCDataValSet
from dataset.coco_stuff_164k import CocoStuff164kTrainSet, CocoStuff164kValSet
from losses import *
from utils.sagan import Discriminator
from utils.flops import cal_multi_adds, cal_param_size
from models.model_zoo import get_segmentation_model
from losses import SegCrossEntropyLoss
def parse_args():
parser = argparse.ArgumentParser(description='Semantic Segmentation Training With Pytorch')
# model and dataset
parser.add_argument('--teacher-model', type=str, default='deeplabv3',
help='model name')
parser.add_argument('--student-model', type=str, default='deeplabv3',
help='model name')
parser.add_argument('--student-backbone', type=str, default='resnet18',
help='backbone name')
parser.add_argument('--teacher-backbone', type=str, default='resnet101',
help='backbone name')
parser.add_argument('--dataset', type=str, default='citys',
help='dataset name')
parser.add_argument('--data', type=str, default='./dataset/cityscapes/',
help='dataset directory')
parser.add_argument('--crop-size', type=int, default=[512, 1024], nargs='+',
help='crop image size: [height, width]')
parser.add_argument('--workers', '-j', type=int, default=8,
metavar='N', help='dataloader threads')
parser.add_argument('--teacher-pretrained', type=str, default='None',
help='pretrained seg model')
parser.add_argument('--student-pretrained', type=str, default='None',
help='pretrained seg model')
# training hyper params
parser.add_argument('--aux', action='store_true', default=False,
help='Auxiliary loss')
parser.add_argument('--aux-weight', type=float, default=0.4,
help='auxiliary loss weight')
parser.add_argument('--batch-size', type=int, default=2, metavar='N',
help='input batch size for training (default: 8)')
parser.add_argument('--start_epoch', type=int, default=0,
metavar='N', help='start epochs (default:0)')
parser.add_argument('--max-iterations', type=int, default=40000, metavar='N',
help='number of epochs to train (default: 50)')
parser.add_argument('--lr', type=float, default=0.02, metavar='LR',
help='learning rate (default: 1e-4)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='momentum (default: 0.9)')
parser.add_argument('--optimizer-type', type=str, default='sgd',
help='w-decay (default: 5e-4)')
parser.add_argument('--weight-decay', type=float, default=1e-4, metavar='M',
help='w-decay (default: 5e-4)')
parser.add_argument('--ignore-label', type=int, default=-1, metavar='N',
help='input batch size for training (default: 8)')
parser.add_argument("--kd-temperature", type=float, default=1.0, help="logits KD temperature")
parser.add_argument("--contrast-kd-temperature", type=float, default=1.0, help="similarity distribution KD temperature")
parser.add_argument("--contrast-temperature", type=float, default=0.1, help="similarity distribution temperature")
parser.add_argument("--lambda-kd", type=float, default=0., help="lambda_kd")
parser.add_argument("--lambda-adv", type=float, default=0., help="lambda_adv")
parser.add_argument("--lambda-d", type=float, default=0., help="lambda_d")
parser.add_argument("--lambda-skd", type=float, default=0., help="lambda_skd")
parser.add_argument("--lambda-cwd-fea", type=float, default=0., help="lambda_cwd feature")
parser.add_argument("--lambda-cwd-logit", type=float, default=0., help="lambda_cwd logits")
parser.add_argument("--lambda-ifv", type=float, default=0., help="lambda_ifv")
parser.add_argument("--lambda-fitnet", type=float, default=0., help="lambda_fitnet")
parser.add_argument("--lambda-at", type=float, default=0., help="lambda_attention transfer")
parser.add_argument("--lambda-psd", type=float, default=0., help="lambda_psd")
parser.add_argument("--lambda-csd", type=float, default=0., help="lambda_csd")
# cuda setting
parser.add_argument('--gpu-id', type=str, default='0')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--local_rank', type=int, default=0)
# checkpoint and log
parser.add_argument('--resume', type=str, default=None,
help='put the path to resuming file if needed')
parser.add_argument('--save-dir', default='~/.torch/models',
help='Directory for saving checkpoint models')
parser.add_argument('--save-epoch', type=int, default=10,
help='save model every checkpoint-epoch')
parser.add_argument('--log-dir', default='../runs/logs/',
help='Directory for saving checkpoint models')
parser.add_argument('--log-iter', type=int, default=10,
help='print log every log-iter')
parser.add_argument('--save-per-iters', type=int, default=800,
help='per iters to save')
parser.add_argument('--val-per-iters', type=int, default=800,
help='per iters to val')
parser.add_argument('--pretrained-base', type=str, default='resnet18-5c106cde.pth',
help='pretrained backbone')
parser.add_argument('--pretrained', type=str, default='None',
help='pretrained seg model')
# evaluation only
parser.add_argument('--val-epoch', type=int, default=1,
help='run validation every val-epoch')
parser.add_argument('--skip-val', action='store_true', default=False,
help='skip validation during training')
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
if num_gpus > 1 and args.local_rank == 0:
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
return args
class Trainer(object):
def __init__(self, args):
self.args = args
self.device = torch.device(args.device)
self.num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
if args.dataset == 'citys':
train_dataset = CSTrainValSet(args.data,
list_path='./dataset/list/cityscapes/train.lst',
max_iters=args.max_iterations*args.batch_size,
crop_size=args.crop_size, scale=True, mirror=True)
val_dataset = CSTrainValSet(args.data,
list_path='./dataset/list/cityscapes/val.lst',
crop_size=(1024, 2048), scale=False, mirror=False)
elif args.dataset == 'voc':
train_dataset = VOCDataTrainSet(args.data, './dataset/list/voc/train_aug.txt', max_iters=args.max_iterations*args.batch_size,
crop_size=args.crop_size, scale=True, mirror=True)
val_dataset = VOCDataValSet(args.data, './dataset/list/voc/val.txt')
elif args.dataset == 'ade20k':
train_dataset = ADETrainSet(args.data, max_iters=args.max_iterations*args.batch_size, ignore_label=args.ignore_label,
crop_size=args.crop_size, scale=True, mirror=True)
val_dataset = ADEDataValSet(args.data)
elif args.dataset == 'camvid':
train_dataset = CamvidTrainSet(args.data, './dataset/list/CamVid/camvid_train_list.txt', max_iters=args.max_iterations*args.batch_size,
ignore_label=args.ignore_label, crop_size=args.crop_size, scale=True, mirror=True)
val_dataset = CamvidValSet(args.data, './dataset/list/CamVid/camvid_val_list.txt')
elif args.dataset == 'coco_stuff_164k':
train_dataset = CocoStuff164kTrainSet(args.data, './dataset/list/coco_stuff_164k/coco_stuff_164k_train.txt', max_iters=args.max_iterations*args.batch_size, ignore_label=args.ignore_label,
crop_size=args.crop_size, scale=True, mirror=True)
val_dataset = CocoStuff164kValSet(args.data, './dataset/list/coco_stuff_164k/coco_stuff_164k_val.txt')
else:
raise ValueError('dataset unifind')
# create network
BatchNorm2d = nn.SyncBatchNorm if args.distributed else nn.BatchNorm2d
self.t_model = get_segmentation_model(model=args.teacher_model,
backbone=args.teacher_backbone,
img_size=args.crop_size,
pretrained=args.teacher_pretrained,
batchnorm_layer=nn.BatchNorm2d,
num_class=train_dataset.num_class).to(self.args.local_rank)
self.s_model = get_segmentation_model(model=args.student_model,
backbone=args.student_backbone,
img_size=args.crop_size,
pretrained=args.student_pretrained,
batchnorm_layer=BatchNorm2d,
num_class=train_dataset.num_class).to(self.device)
for t_n, t_p in self.t_model.named_parameters():
t_p.requires_grad = False
self.t_model.eval()
self.s_model.eval()
self.D_model = Discriminator(preprocess_GAN_mode=1, input_channel=train_dataset.num_class, distributed=args.distributed).cuda()
args.batch_size = args.batch_size // num_gpus
train_sampler = make_data_sampler(train_dataset, shuffle=True, distributed=args.distributed)
train_batch_sampler = make_batch_data_sampler(train_sampler, args.batch_size, args.max_iterations)
val_sampler = make_data_sampler(val_dataset, False, args.distributed)
val_batch_sampler = make_batch_data_sampler(val_sampler, 1)
self.train_loader = data.DataLoader(dataset=train_dataset,
batch_sampler=train_batch_sampler,
num_workers=args.workers,
pin_memory=True)
self.val_loader = data.DataLoader(dataset=val_dataset,
batch_sampler=val_batch_sampler,
num_workers=args.workers,
pin_memory=True)
# resume checkpoint if needed
if args.resume:
if os.path.isfile(args.resume):
name, ext = os.path.splitext(args.resume)
assert ext == '.pkl' or '.pth', 'Sorry only .pth and .pkl files supported.'
print('Resuming training, loading {}...'.format(args.resume))
self.s_model.load_state_dict(torch.load(args.resume, map_location=lambda storage, loc: storage))
x = torch.randn(1,3,512,512).cuda()
t_y = self.t_model(x)
s_y = self.s_model(x)
t_channels = t_y[-1].size(1)
s_channels = s_y[-1].size(1)
self.criterion = SegCrossEntropyLoss(ignore_index=args.ignore_label).to(self.device)
self.criterion_kd = CriterionKD(temperature=args.kd_temperature).to(self.device)
self.criterion_adv = CriterionAdv('hinge').to(self.device)
self.criterion_adv_for_G = CriterionAdvForG('hinge').to(self.device)
self.criterion_skd = CriterionStructuralKD().to(self.device)
self.criterion_ifv = CriterionIFV(train_dataset.num_class).to(self.device)
self.criterion_cwd = CriterionCWD(s_channels, t_channels, norm_type='channel',divergence='kl', temperature=4.).to(self.device)
self.criterion_fitnet = CriterionFitNet(s_channels, t_channels).to(self.device)
self.criterion_at = CriterionAT().to(self.device)
self.criterion_dsd = CriterionDoubleSimKD().to(self.device)
# optimizer, for model just includes pretrained, head and auxlayer
params_list = nn.ModuleList([])
params_list.append(self.s_model)
params_list.append(self.criterion_cwd)
params_list.append(self.criterion_fitnet)
if args.optimizer_type == 'sgd':
self.optimizer = torch.optim.SGD(params_list.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
elif args.optimizer_type == 'adamw':
self.optimizer = torch.optim.AdamW(params_list.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
else:
raise ValueError('no such optimizer')
self.D_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
self.D_model.parameters()),
4e-4, [0.9, 0.99])
if args.distributed:
self.s_model = nn.parallel.DistributedDataParallel(self.s_model,
device_ids=[args.local_rank],
output_device=args.local_rank)
self.D_model = nn.parallel.DistributedDataParallel(self.D_model, device_ids=[args.local_rank],
output_device=args.local_rank)
# evaluation metrics
self.metric = SegmentationMetric(train_dataset.num_class)
self.best_pred = 0.0
def adjust_lr(self, base_lr, iter, max_iter, power):
cur_lr = base_lr*((1-float(iter)/max_iter)**(power))
for param_group in self.optimizer.param_groups:
param_group['lr'] = cur_lr
return cur_lr
def reduce_tensor(self, tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
return rt
def reduce_mean_tensor(self, tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= self.num_gpus
return rt
def train(self):
save_to_disk = get_rank() == 0
log_per_iters, val_per_iters = self.args.log_iter, self.args.val_per_iters
save_per_iters = self.args.save_per_iters
start_time = time.time()
logger.info('Start training, Total Iterations {:d}'.format(args.max_iterations))
self.s_model.train()
for iteration, (images, targets, _) in enumerate(self.train_loader):
iteration = iteration + 1
images = images.to(self.device)
targets = targets.long().to(self.device)
with torch.no_grad():
t_outputs = self.t_model(images)
s_outputs = self.s_model(images)
task_loss = self.criterion(s_outputs[0], targets)
losses = task_loss
kd_loss = torch.tensor(0.).cuda()
adv_G_loss = torch.tensor(0.).cuda()
adv_D_loss = torch.tensor(0.).cuda()
skd_loss = torch.tensor(0.).cuda()
cwd_fea_loss = torch.tensor(0.).cuda()
cwd_logit_loss = torch.tensor(0.).cuda()
ifv_loss = torch.tensor(0.).cuda()
fitnet_loss = torch.tensor(0.).cuda()
at_loss = torch.tensor(0.).cuda()
psd_loss = torch.tensor(0.).cuda()
csd_loss = torch.tensor(0.).cuda()
adv_G_loss = self.args.lambda_adv*self.criterion_adv_for_G(self.D_model(s_outputs[0]))
adv_D_loss = self.args.lambda_d*(self.criterion_adv(self.D_model(s_outputs[0].detach()),
self.D_model(t_outputs[0].detach())))
if self.args.lambda_kd != 0.:
kd_loss = self.args.lambda_kd * self.criterion_kd(s_outputs[0], t_outputs[0])
if self.args.lambda_skd != 0:
skd_loss = self.args.lambda_skd * self.criterion_skd(s_outputs[-1], t_outputs[-1])
if self.args.lambda_cwd_fea != 0:
cwd_fea_loss = self.args.lambda_cwd_fea * self.criterion_cwd(s_outputs[-1], t_outputs[-1])
if self.args.lambda_cwd_logit != 0:
cwd_logit_loss = self.args.lambda_cwd_logit * self.criterion_cwd(s_outputs[0], t_outputs[0])
if self.args.lambda_ifv != 0:
ifv_loss = self.args.lambda_ifv * self.criterion_ifv(s_outputs[-1], t_outputs[-1], targets)
if self.args.lambda_fitnet != 0:
fitnet_loss = self.args.lambda_fitnet * self.criterion_fitnet(s_outputs[-1], t_outputs[-1])
if self.args.lambda_at != 0:
at_loss = self.args.lambda_at * self.criterion_at(s_outputs[-1], t_outputs[-1])
if self.args.lambda_psd != 0. and self.args.lambda_csd != 0.:
feat_s_list = [s_outputs[-1], s_outputs[0]]
feat_t_list = [t_outputs[-1], t_outputs[0]]
psd_loss, csd_loss = self.criterion_dsd(feat_s_list, feat_t_list)
psd_loss = self.args.lambda_psd * psd_loss
csd_loss = self.args.lambda_csd * csd_loss
losses = task_loss + kd_loss + adv_G_loss + \
skd_loss + cwd_fea_loss + cwd_logit_loss +\
ifv_loss + at_loss + fitnet_loss + \
psd_loss + csd_loss
D_losses = adv_D_loss
lr = self.adjust_lr(base_lr=args.lr, iter=iteration-1, max_iter=args.max_iterations, power=0.9)
self.optimizer.zero_grad()
losses.backward()
self.optimizer.step()
self.D_optimizer.zero_grad()
D_losses.backward()
self.D_optimizer.step()
task_loss_reduced = self.reduce_mean_tensor(task_loss)
kd_loss_reduced = self.reduce_mean_tensor(kd_loss)
adv_G_loss_reduced = self.reduce_mean_tensor(adv_G_loss)
skd_loss_reduced = self.reduce_mean_tensor(skd_loss)
cwd_fea_loss_reduced = self.reduce_mean_tensor(cwd_fea_loss)
cwd_logit_loss_reduced = self.reduce_mean_tensor(cwd_logit_loss)
ifv_loss_reduced = self.reduce_mean_tensor(ifv_loss)
at_loss_reduced = self.reduce_mean_tensor(at_loss)
fitnet_loss_reduced = self.reduce_mean_tensor(fitnet_loss)
psd_loss_reduced = self.reduce_mean_tensor(psd_loss)
csd_loss_reduced = self.reduce_mean_tensor(csd_loss)
D_losses_reduced = self.reduce_mean_tensor(D_losses)
eta_seconds = ((time.time() - start_time) / iteration) * (args.max_iterations - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if iteration % log_per_iters == 0 and save_to_disk:
logger.info(
"Iters: {:d}/{:d} || Lr: {:.6f} || Task Loss: {:.4f} || KD Loss: {:.4f}" \
"|| Adv_G Loss: {:.4f} || Adv_D Loss: {:.4f}" \
"|| skd_loss: {:.4f} || cwd_fea_loss: {:.4f} || cwd_logit_loss: {:.4f} " \
"|| ifv_loss: {:.4f} || at_loss: {:.4f} || fitnet_loss: {:.4f} " \
"|| psd_loss: {:.4f} || csd_loss: {:.4f} ||" \
"|| Cost Time: {} || Estimated Time: {}".format(
iteration, args.max_iterations, self.optimizer.param_groups[0]['lr'],
task_loss_reduced.item(),
kd_loss_reduced.item(),
adv_G_loss_reduced.item(),
D_losses_reduced.item(),
skd_loss_reduced.item(),
cwd_fea_loss_reduced.item(),
cwd_logit_loss_reduced.item(),
ifv_loss_reduced.item(),
at_loss_reduced.item(),
fitnet_loss_reduced.item(),
psd_loss_reduced.item(),
csd_loss_reduced.item(),
str(datetime.timedelta(seconds=int(time.time() - start_time))),
eta_string))
if iteration % save_per_iters == 0 and save_to_disk:
save_checkpoint(self.s_model, self.args, is_best=False)
if not self.args.skip_val and iteration % val_per_iters == 0:
self.validation()
self.s_model.train()
save_checkpoint(self.s_model, self.args, is_best=False)
total_training_time = time.time() - start_time
total_training_str = str(datetime.timedelta(seconds=total_training_time))
logger.info(
"Total training time: {} ({:.4f}s / it)".format(
total_training_str, total_training_time / args.max_iterations))
def validation(self):
# total_inter, total_union, total_correct, total_label = 0, 0, 0, 0
is_best = False
self.metric.reset()
if self.args.distributed:
model = self.s_model.module
else:
model = self.s_model
torch.cuda.empty_cache() # TODO check if it helps
model.eval()
logger.info("Start validation, Total sample: {:d}".format(len(self.val_loader)))
for i, (image, target, filename) in enumerate(self.val_loader):
image = image.to(self.device)
target = target.long().to(self.device)
image = torch.cat([image[:,:,:,:1024],image[:,:,:,1024:]], dim=0)
with torch.no_grad():
outputs = model(image)
pred = torch.cat([outputs[0][0],outputs[0][1]], dim=-1).unsqueeze(0)
B, H, W = target.size()
pred = F.interpolate(pred, (H, W), mode='bilinear', align_corners=True)
self.metric.update(pred, target)
pixAcc, mIoU = self.metric.get()
logger.info(str(args.local_rank) + "Sample: {:d}, Validation pixAcc: {:.3f}, mIoU: {:.3f}".format(i + 1, pixAcc, mIoU))
if self.num_gpus > 1:
sum_total_correct = torch.tensor(self.metric.total_correct).cuda().to(args.local_rank)
sum_total_label = torch.tensor(self.metric.total_label).cuda().to(args.local_rank)
sum_total_inter = torch.tensor(self.metric.total_inter).cuda().to(args.local_rank)
sum_total_union = torch.tensor(self.metric.total_union).cuda().to(args.local_rank)
sum_total_correct = self.reduce_tensor(sum_total_correct)
sum_total_label = self.reduce_tensor(sum_total_label)
sum_total_inter = self.reduce_tensor(sum_total_inter)
sum_total_union = self.reduce_tensor(sum_total_union)
pixAcc = 1.0 * sum_total_correct / (2.220446049250313e-16 + sum_total_label) # remove np.spacing(1)
IoU = 1.0 * sum_total_inter / (2.220446049250313e-16 + sum_total_union)
mIoU = IoU.mean().item()
logger.info("Overall validation pixAcc: {:.3f}, mIoU: {:.3f}".format(
pixAcc.item() * 100, mIoU * 100))
new_pred = mIoU
if new_pred > self.best_pred:
is_best = True
self.best_pred = new_pred
if args.local_rank == 0:
save_checkpoint(self.s_model, self.args, is_best)
synchronize()
def save_checkpoint(model, args, is_best=False):
"""Save Checkpoint"""
directory = os.path.expanduser(args.save_dir)
if not os.path.exists(directory):
os.makedirs(directory)
filename = 'kd_{}_{}_{}.pth'.format(args.student_model, args.student_backbone, args.dataset)
filename = os.path.join(directory, filename)
if args.distributed:
model = model.module
torch.save(model.state_dict(), filename)
if is_best:
best_filename = 'kd_{}_{}_{}_best_model.pth'.format(args.student_model, args.student_backbone, args.dataset)
best_filename = os.path.join(directory, best_filename)
shutil.copyfile(filename, best_filename)
if __name__ == '__main__':
args = parse_args()
# reference maskrcnn-benchmark
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.num_gpus = num_gpus
args.distributed = num_gpus > 1
if not args.no_cuda and torch.cuda.is_available():
cudnn.benchmark = False
args.device = "cuda"
else:
args.distributed = False
args.device = "cpu"
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
logger = setup_logger("semantic_segmentation", args.log_dir, get_rank(), filename='{}_{}_{}_log.txt'.format(
args.student_model, args.teacher_backbone, args.student_backbone, args.dataset))
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
trainer = Trainer(args)
trainer.train()
torch.cuda.empty_cache()