forked from alexa/dialoglue
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dump_outputs.py
165 lines (145 loc) · 5.61 KB
/
dump_outputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import json
import os
hwu_command = """
CUDA_VISIBLE_DEVICES=0 python run.py \
--train_data_path data_utils/dialoglue/hwu/train.csv \
--val_data_path data_utils/dialoglue/hwu/val.csv \
--test_data_path data_utils/dialoglue/hwu/test.csv \
--token_vocab_path bert-base-uncased-vocab.txt \
--output_dir {} \
--train_batch_size 64 --dropout 0.1 --num_epochs 0 --learning_rate 6e-5 \
--model_name_or_path bert-base-uncased --task intent --do_lowercase --max_seq_length 50 --mlm_pre --mlm_during --dump_outputs \
"""
banking_command = """
CUDA_VISIBLE_DEVICES=0 python run.py \
--train_data_path data_utils/dialoglue/banking/train.csv \
--val_data_path data_utils/dialoglue/banking/val.csv \
--test_data_path data_utils/dialoglue/banking/test.csv \
--token_vocab_path bert-base-uncased-vocab.txt \
--output_dir {} \
--train_batch_size 64 --dropout 0.1 --num_epochs 0 --learning_rate 6e-5 \
--model_name_or_path bert-base-uncased --task intent --do_lowercase --max_seq_length 100 --mlm_pre --mlm_during --dump_outputs \
"""
clinc_command = """
CUDA_VISIBLE_DEVICES=0 python run.py \
--train_data_path data_utils/dialoglue/clinc/train.csv \
--val_data_path data_utils/dialoglue/clinc/val.csv \
--test_data_path data_utils/dialoglue/clinc/test.csv \
--token_vocab_path bert-base-uncased-vocab.txt \
--output_dir {} \
--train_batch_size 64 --dropout 0.1 --num_epochs 0 --learning_rate 6e-5 \
--model_name_or_path bert-base-uncased --task intent --do_lowercase --max_seq_length 50 --mlm_pre --mlm_during --dump_outputs \
"""
restaurant8k_command = """
CUDA_VISIBLE_DEVICES=0 python run.py \
--train_data_path data_utils/dialoglue/restaurant8k/train.json \
--val_data_path data_utils/dialoglue/restaurant8k/val.json \
--test_data_path data_utils/dialoglue/restaurant8k/test.json \
--token_vocab_path bert-base-uncased-vocab.txt \
--output_dir {} \
--train_batch_size 64 --dropout 0.1 --num_epochs 0 --learning_rate 6e-5 \
--model_name_or_path bert-base-uncased --task slot --do_lowercase --max_seq_length 50 --mlm_pre --mlm_during --dump_outputs \
"""
dstc8_command = """
CUDA_VISIBLE_DEVICES=0 python run.py \
--train_data_path data_utils/dialoglue/dstc8_sgd/train.json \
--val_data_path data_utils/dialoglue/dstc8_sgd/val.json \
--test_data_path data_utils/dialoglue/dstc8_sgd/test.json \
--token_vocab_path bert-base-uncased-vocab.txt \
--output_dir {} \
--train_batch_size 64 --dropout 0.1 --num_epochs 0 --learning_rate 6e-5 \
--model_name_or_path bert-base-uncased --task slot --do_lowercase --max_seq_length 50 --mlm_pre --mlm_during --dump_outputs \
"""
top_command = """
CUDA_VISIBLE_DEVICES=0 python run.py \
--train_data_path data_utils/dialoglue/top/train.txt \
--val_data_path data_utils/dialoglue/top/eval.txt \
--test_data_path data_utils/dialoglue/top/test.txt \
--token_vocab_path bert-base-uncased-vocab.txt \
--output_dir {} \
--train_batch_size 64 --dropout 0.1 --num_epochs 0 --learning_rate 6e-5 \
--model_name_or_path bert-base-uncased --task top --do_lowercase --max_seq_length 100 --mlm_pre --mlm_during --dump_outputs \
"""
multiwoz_command = """
cd trippy;
TASK="multiwoz21"
DATA_DIR="data/MULTIWOZ2.1"
OUT_DIR={0}
args_add="--do_eval --predict_type=test"
CUDA_VISIBLE_DEVICES=0 python3 run_dst.py \
--task_name=${TASK} \
--data_dir=${DATA_DIR} \
--dataset_config=dataset_config/${TASK}.json \
--model_type="bert" \
--model_name_or_path="bert-base-uncased" \
--do_lower_case \
--learning_rate=1e-4 \
--num_train_epochs=50 \
--max_seq_length=180 \
--per_gpu_train_batch_size=48 \
--per_gpu_eval_batch_size=1 \
--output_dir=${OUT_DIR} \
--save_epochs=20 \
--logging_steps=10 \
--warmup_proportion=0.1 \
--adam_epsilon=1e-6 \
--label_value_repetitions \
--swap_utterances \
--append_history \
--use_history_labels \
--delexicalize_sys_utts \
--class_aux_feats_inform \
--class_aux_feats_ds \
--seed 42 \
--mlm_pre \
--mlm_during \
${args_add} \
2>&1 | tee ${OUT_DIR}/test.log
python3 metric_bert_dst.py \
${TASK} \
dataset_config/${TASK}.json \
"${OUT_DIR}/pred_res.test.json" \
2>&1 | tee ${OUT_DIR}/eval_pred_test.log
"""
commands = [
hwu_command,
banking_command,
clinc_command,
restaurant8k_command,
dstc8_command,
top_command,
multiwoz_command,
]
checkpoints = [
"checkpoints/hwu/",
"checkpoints/banking/",
"checkpoints/clinc/",
"checkpoints/restaurant8k/",
"checkpoints/dstc8/",
"checkpoints/top/",
"checkpoints/multiwoz/",
]
datasets = [
"hwu",
"banking",
"clinc",
"restaurant8k",
"dstc8",
"top",
"multiwoz",
]
for cmd, ckpt in zip(commands, checkpoints):
if "multiwoz" in ckpt:
open("mwoz_command_temp.sh", "w+").write(cmd.replace("{0}", "../" + ckpt))
cmd = "bash mwoz_command_temp.sh"
else:
continue
os.system(cmd.format(ckpt))
output_dict = {}
for dataset, ckpt in zip(datasets, checkpoints):
if dataset == "multiwoz":
data = json.load(open(ckpt + "pred_res.test.final.json"))
else:
data = json.load(open(ckpt + "outputs.json"))
output_dict[dataset] = data
json.dump(output_dict, open("submission.json", "w+"))