-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_OOD.py
270 lines (218 loc) · 8.95 KB
/
eval_OOD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import warnings
warnings.filterwarnings('ignore')
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import torch
import numpy as np
from models import models, wrn
from laplace import kfla
import laplace.util as lutil
from util.evaluation import *
import util.dataloaders as dl
from math import *
from tqdm import tqdm, trange
import argparse
import os, sys
from tqdm import tqdm, trange
from collections import defaultdict
from pycalib.calibration_methods import TemperatureScaling
import lula.model
parser = argparse.ArgumentParser()
parser.add_argument('--randseed', type=int, default=9999)
parser.add_argument('--dataset', default='MNIST')
parser.add_argument('--ood_dset', default='imagenet', choices=['best', 'uniform', 'smooth', 'imagenet'])
parser.add_argument('--dont_save', action='store_true', default=False)
args = parser.parse_args()
assert args.dataset in ['MNIST', 'CIFAR10', 'SVHN', 'CIFAR100']
torch.cuda.set_device(0)
np.random.seed(args.randseed)
torch.manual_seed(args.randseed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
num_classes = 100 if args.dataset == 'CIFAR100' else 10
num_channel = 1 if args.dataset == 'MNIST' else 3
train_loader = dl.datasets_dict[args.dataset](train=True, augm_flag=False)
val_loader, test_loader = dl.datasets_dict[args.dataset](train=False, val_size=2000)
targets_val = torch.cat([y for x, y in val_loader], dim=0).numpy()
targets = torch.cat([y for x, y in test_loader], dim=0).numpy()
print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset))
# For LA-OOD.
ood_val_loader, _ = dl.ImageNet32(dataset=args.dataset, train=False, val_size=2000)
data_shape = [1, 28, 28] if args.dataset == 'MNIST' else [3, 32, 32]
ood_noise_names = ['UniformNoise', 'Noise']
ood_test_names = {
'MNIST': ['EMNIST', 'KMNIST', 'FMNIST', 'GrayCIFAR10'],
'CIFAR10': ['SVHN', 'LSUN', 'CIFAR100', 'FMNIST3D'],
'SVHN': ['CIFAR10', 'LSUN', 'CIFAR100', 'FMNIST3D'],
'CIFAR100': ['SVHN', 'LSUN', 'CIFAR10', 'FMNIST3D'],
}
ood_names = ood_test_names[args.dataset] + ood_noise_names
ood_test_loaders = {}
for ood_name in ood_test_names[args.dataset]:
ood_test_loaders[ood_name] = dl.datasets_dict[ood_name](train=False)
for ood_name in ood_noise_names:
ood_test_loaders[ood_name] = dl.datasets_dict[ood_name](dataset=args.dataset, train=False, size=2000)
method_types = [
'MAP', 'MAP-Temp', 'MAP-OE', 'DE', 'DE-Temp', 'LA', 'LA-OOD', 'LULA', 'LULA-OOD', 'LULA-OE'
]
method_strs = [
'MAP', 'MAP-Temp', 'MAP-OE', 'DE', 'DE-Temp', 'LA', 'LA-OOD', 'LA-LULA', 'LA-LULA-OOD', 'LA-LULA-OE'
]
tab_acc = {}
tab_ece = {}
tab_mmc = {mt: {} for mt in method_strs}
tab_auroc = {mt: {} for mt in method_strs}
tab_auprc = {mt: {} for mt in method_strs}
tab_fpr95 = {mt: {} for mt in method_strs}
def load_model(type='MAP'):
def create_model():
# OE doesn't play well with WRN on MNIST
if args.dataset == 'MNIST' and 'OE' in type:
return models.LeNetMadry().cuda()
else:
return wrn.WideResNet(16, 4, num_classes, num_channel).cuda()
if type in ['DE', 'DE-Temp']:
K = 5
model = [create_model() for _ in range(K)]
state_dicts = torch.load(f'./pretrained_models/{args.dataset}_wrn_de.pt')
for k in range(K):
model[k].load_state_dict(state_dicts[k])
model[k].eval()
else:
model = create_model()
modifier = 'plain' if 'OE' not in type else 'oe'
if args.dataset == 'MNIST' and 'OE' in type:
model.load_state_dict(torch.load(f'./pretrained_models/{args.dataset}_{modifier}.pt'))
else:
model.load_state_dict(torch.load(f'./pretrained_models/{args.dataset}_wrn_{modifier}.pt'))
model.eval()
# Additionally, load these for LULA
if 'LULA' in type:
path = 'kfla' + ('/oe' if type == 'LULA-OE' else '')
if args.dataset == 'MNIST' and type == 'LULA-OE':
lula_params = torch.load(f'./pretrained_models/{path}/{args.dataset}_lula_{args.ood_dset}.pt')
else:
lula_params = torch.load(f'./pretrained_models/{path}/{args.dataset}_wrn_lula_{args.ood_dset}.pt')
if args.ood_dset == 'best':
state_dict, n_units, noise = lula_params
print(f'LULA uses this OOD dataset: {noise}')
else:
state_dict, n_units = lula_params
print(n_units)
model = lula.model.LULAModel_LastLayer(model, n_units).cuda()
model.to_gpu()
model.load_state_dict(state_dict)
model.disable_grad_mask()
model.unmask()
model.eval()
if type in ['LA', 'LA-OOD', 'LULA', 'LULA-OOD', 'LULA-OE']:
model = kfla.KFLA(model)
model.get_hessian(train_loader)
# For grid search
interval = torch.logspace(-6, 0, 100)
if type in ['LA-OOD', 'LULA-OOD']:
# # Following Kristiadi et al. ICML 2020: https://github.com/wiseodd/last_layer_laplace
# var0 = model.gridsearch_var0(val_loader, ood_val_loader, interval, n_classes=num_classes, lam=0.25)
# print(var0)
# sys.exit(0)
if type == 'LA-OOD':
var0s = {
'MNIST': 0.3275, 'SVHN': 0.4977, 'CIFAR10': 0.4329, 'CIFAR100': 0.0705
}
else: # 'LULA-OOD'
var0s = {
'MNIST': 0.0115, 'SVHN': 0.0705, 'CIFAR10': 0.4329, 'CIFAR100': 0.0705
}
var0 = torch.tensor(var0s[args.dataset]).float().cuda()
else:
# For standard Laplace and LULA, use the exact prior variance
var0 = torch.tensor(1/(5e-4*len(train_loader.dataset))).float().cuda()
model.estimate_variance(var0)
# Temperature scaling; T=1 means no temp. scaling
if type == 'MAP-Temp':
logits = predict_logit(val_loader, model).cpu().numpy()
T = TemperatureScaling().fit(logits, targets_val).T
elif type == 'DE-Temp':
logits = 0
# Average, then find the optimal temp. https://arxiv.org/abs/2007.08792
for m in model:
logits += 1/len(model) * predict_logit(val_loader, m).cpu().numpy()
T = TemperatureScaling().fit(logits, targets_val).T
else:
T = 1
return model, T
def predict_(test_loader, model, model_name, params=None, T=1):
assert model_name in method_types
if model_name in ['LA', 'LA-OOD', 'LULA', 'LULA-OOD', 'LULA-OE']:
py = lutil.predict(test_loader, model, n_samples=20)
elif model_name in ['DE', 'DE-Temp']:
py = predict_ensemble(test_loader, model, T=T)
else: # MAP
py = predict(test_loader, model, T=T)
return py.cpu().numpy()
def evaluate(model_name):
assert model_name in method_types
model, T = load_model(model_name)
params = None
if 'LULA' in model_name:
model_str = f'LA-LULA{model_name[4:]}'
else:
model_str = model_name
py_in = predict_(test_loader, model, model_name, params=params, T=T)
acc_in = np.mean(np.argmax(py_in, 1) == targets)
conf_in = get_confidence(py_in)
mmc = conf_in.mean()
ece, mce = get_calib(py_in, targets)
tab_mmc[model_str][args.dataset] = mmc
tab_auroc[model_str][args.dataset] = None
tab_auprc[model_str][args.dataset] = None
tab_fpr95[model_str][args.dataset] = None
tab_acc[model_str] = acc_in
tab_ece[model_str] = ece
print(f'[In, {model_str}] Accuracy: {acc_in:.3f}; ECE: {ece:.3f}; MCE: {mce:.3f}; MMC: {mmc:.3f}')
for ood_name, ood_test_loader in ood_test_loaders.items():
py_out = predict_(ood_test_loader, model, model_name, params=params, T=T)
conf = get_confidence(py_out)
mmc = conf.mean()
aur = get_auroc(py_in, py_out)
aupr = get_aupr(py_in, py_out)
fpr95, _ = get_fpr95(py_in, py_out)
tab_mmc[model_str][ood_name] = mmc
tab_auroc[model_str][ood_name] = aur
tab_auprc[model_str][ood_name] = aupr
tab_fpr95[model_str][ood_name] = fpr95
print(f'[Out-{ood_name}, {model_str}] MMC: {mmc:.3f}; AUROC: {aur:.3f}; AUPRC: {aupr:.3f}; FPR@95: {fpr95:.3f}')
evaluate('MAP')
print()
evaluate('MAP-Temp')
print()
evaluate('MAP-OE')
print()
evaluate('DE')
print()
evaluate('DE-Temp')
print()
evaluate('LA')
print()
evaluate('LA-OOD')
print()
evaluate('LULA')
print()
evaluate('LULA-OOD')
print()
evaluate('LULA-OE')
print()
if not args.dont_save:
# Save dict
dir_name = f'results/OOD/{args.ood_dset}'
suffix = f'{args.dataset.lower()}_{args.randseed}'
if not os.path.exists(dir_name):
os.makedirs(dir_name)
np.save(f'{dir_name}/tab_acc_{suffix}', tab_acc)
np.save(f'{dir_name}/tab_ece_{suffix}', tab_ece)
np.save(f'{dir_name}/tab_mmc_{suffix}', tab_mmc)
np.save(f'{dir_name}/tab_auroc_{suffix}', tab_auroc)
np.save(f'{dir_name}/tab_auprc_{suffix}', tab_auprc)
np.save(f'{dir_name}/tab_fpr95_{suffix}', tab_fpr95)