forked from CERN/TIGRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon_geometry.py
348 lines (294 loc) · 13 KB
/
common_geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import numpy as np
import copy
from scipy.spatial.transform import Rotation
from .geometry import Geometry
# Tomosymthesis
def staticDetectorGeo(geo,angles,rot=0) -> Geometry:
"""
# angles: angle off the aixs between the source and detector centre (on x-y plane)
# when angles=0, the source is perpendicular to the detector
# rot: rotation of both source and detector around origin
"""
ngeo = copy.deepcopy(geo)
R = ngeo.DSD-ngeo.DSO
rot = rot/180*np.pi
ngeo.DSD = ngeo.DSO + R*np.cos(angles)
ngeo.offDetector = np.vstack([0*angles, R*np.sin(angles)]).T
ngeo.rotDetector = np.vstack([0*angles, 0*angles, -angles]).T
angles += rot
ngeo.angles = np.vstack([angles, 0*angles, 0*angles]).T
return ngeo
# Linear scan of source
def staticDetLinearSourceGeo(geo,s_pos,s_rot=0,rot=0) -> Geometry:
"""
# s_pos: distance along source scanning linear trajectry
# when s_pos = 0, source is aligned to the origin and detector centre on x-axis
# s_rot: rotation angle between the source linear trajectry and detector on (looking from top on x-y plane, anticlock-wise)
# rot: source and detector rotation angle around the origin (looking from top on x-y plane, anit-clockwise)
"""
ngeo = copy.deepcopy(geo)
if np.isscalar(s_rot):
s_rot = s_rot * np.ones_like(s_pos)
s_rot = s_rot / 180 *np.pi
if np.isscalar(rot):
rot = rot * np.ones_like(s_pos)
if len(s_pos) != len(rot) or len(s_pos) != len(s_rot):
raise("Inputs length do not match")
rot = rot/180*np.pi
ang = np.arctan2(s_pos*np.cos(s_rot), ngeo.DSO + s_pos*np.sin(s_rot))
R = ngeo.DSD - ngeo.DSO
if hasattr(ngeo,"offDetector"):
ngeo.offDetector = ngeo.offDetector.astype(np.float32) + np.array([ang*0, R*np.sin(ang)]).T
else:
ngeo.offDetector = np.array([ang*0, R*np.sin(ang)]).T
if hasattr(ngeo,"rotDetector"):
ngeo.rotDetector += np.array([0*ang, 0*ang, -ang]).T
else:
ngeo.rotDetector = np.array([0*ang, 0*ang, -ang]).T
ngeo.DSO = np.sqrt((s_pos*np.cos(s_rot))**2 + (ngeo.DSO + s_pos*np.sin(s_rot))**2)
ngeo.DSD = np.sqrt((s_pos*np.cos(s_rot))**2 + (ngeo.DSD + s_pos*np.sin(s_rot))**2)
ang += rot
ngeo.angles = np.vstack([ang, 0*ang, 0*ang]).T
return ngeo
def ArbitrarySourceDetMoveGeo(geo,s_pos,d_pos=None,d_rot=None) -> Geometry:
"""
# Source and Detector can move arbitrarily while the object is fixed
#
# Parameters
# ----------
# geo: standard cone beam geometry
# s_pos: nx3 array, source movement coordinates (x,y,z), in mm
# default s_pos = (DSO, 0, 0), source is on x-axis (+)
# d_pos: nx3 array, detector centre movement coordinates (x,y,z), in mm
# default d_pos = (DSO-DSD, 0, 0), detector centre on x-axis (-)
# d_rot: nx3 array, detector rotation angles (roll, pitch, yaw) in degrees,
# default - no rotation, detector facing origin
# Note:
# a point source rotation has no effect, ignored
#
# Returns
# -------
# geometry with arbitrarily specified movements of source and detector
#
"""
s_pos = np.array(s_pos) if isinstance(s_pos,list) else s_pos
ngeo = copy.deepcopy(geo)
if s_pos.ndim != 2:
raise("Input s_pos should be an n x 3 array")
else:
n = s_pos.shape[0]
if s_pos.shape[1] != 3:
raise("Input s_pos should be an n x 3 array")
if d_pos is None:
d_pos = np.repeat([[ngeo.DSO-ngeo.DSD, 0, 0]], n, axis=0)
elif isinstance(d_pos,list):
d_pos = np.array(d_pos)
if d_rot is None:
d_rot = np.zeros((n,3))
elif isinstance(d_rot,list):
d_rot = np.array(d_rot)
if s_pos.shape != d_pos.shape or s_pos.shape != d_rot.shape:
raise("Inputs dimensions do not match")
d_rot = d_rot / 180*np.pi
# source and detector vector lengths and directions
rs = np.linalg.norm(s_pos, axis=1)
ns = s_pos / np.tile(rs, (3,1)).T
rd = np.linalg.norm(d_pos, axis=1)
nd = d_pos / np.tile(rd, (3,1)).T
# source euler angles (intrinsic) away from x-axis in "ZYZ" order
s0 = np.zeros_like(s_pos)
s0[:,0] = s_pos[:,0]
s_ang = euler_from_vecs(s0, s_pos, order="zyz")
# check angles between OS and OD
sd_cross = np.cross(ns, nd)
# note: A x B = ||A||.||B||sin(theta)
sd_ang = np.arcsin(sd_cross)
if (abs(sd_ang) >= np.pi/2).any():
raise RuntimeError("Source and detector are not always on different sides (some angle<=90 degree)")
# detector angles from ray
d_cross = np.cross(-ns, nd)
d_ang = np.arcsin(d_cross)
pd = d_cross * np.tile(rd, (3,1)).T
if hasattr(ngeo,"offDetector"):
ngeo.offDetector = ngeo.offDetector.astype(np.float64) + np.vstack([pd[:,1], -pd[:,2]]).T
else:
ngeo.offDetector = np.vstack([pd[:,1], -pd[:,2]]).T
if hasattr(ngeo,"rotDetector"):
ngeo.rotDetector += d_ang + d_rot
else:
ngeo.rotDetector = d_ang + d_rot
ngeo.DSO = np.linalg.norm(s_pos, axis=1)
ngeo.DSD = np.linalg.norm(s_pos-d_pos, axis=1)
ngeo.angles = s_ang
return ngeo
def ArbitrarySourceDetectorFixedObject(
geometry: Geometry,
focal_spot_position_mm: np.ndarray,
detector_center_position_mm: np.ndarray,
detector_line_direction: np.ndarray,
detector_column_direction: np.ndarray,
origin_mm: np.ndarray | None = None,
use_center_correction: bool = True) -> Geometry:
"""
geo: Geometry object
focal_spot_position_mm: position of the source,
detector_center_position_mm: position of the detector center,
detector_line_direction: detecor line vector from pixel (0, 0) -> (0, 1),
detector_column_direction: detecor column vector from pixel (0, 0) -> (1, 0),
origin_mm: origin of the ct trajectory. The source and detector positions are translated with this value. Defaults to: None.
use_center_correction: Calculate an arbiatary origin of the trajectory. Defaults to: True.
"""
# Assumption: CT trajectory has one rotation center.
number_of_projection = focal_spot_position_mm.shape[0]
if origin_mm is None:
origin_mm = np.zeros((3,))
focal_spot_position_mm = focal_spot_position_mm - origin_mm
detector_center_position_mm = detector_center_position_mm - origin_mm
if use_center_correction:
trajectory_center_mm = calculate_trajectory_center_mm(
focal_spot_position_mm, detector_center_position_mm)
focal_spot_position_mm = focal_spot_position_mm - trajectory_center_mm
detector_center_position_mm = detector_center_position_mm - trajectory_center_mm
else:
trajectory_center_mm = np.zeros((3,))
if not use_center_correction:
geometry.offOrigin = trajectory_center_mm.reshape((3, ))
# source and detector are orthogonal. The angle is rotates the source from the x axis.
# 1. find nearest point from source detector line to trajectory center
source_detector_vector = detector_center_position_mm - focal_spot_position_mm
fdd_mm = np.linalg.norm(source_detector_vector, axis=1).reshape((-1, 1))
fod_mm = np.zeros_like(fdd_mm)
source_detector_direction = source_detector_vector / fdd_mm
nearest_point_mm = np.zeros_like(focal_spot_position_mm)
detector_offsets_mm = np.zeros((number_of_projection, 2))
euler_zyz = np.zeros_like(focal_spot_position_mm)
euler_xyz = np.zeros_like(focal_spot_position_mm)
first_rot = np.eye(3)
for i in range(number_of_projection):
nearest_point_mm[i] = perpendicular_point_on_line(
trajectory_center_mm, focal_spot_position_mm[i], -source_detector_direction[i])
fod_mm[i] = np.linalg.norm(nearest_point_mm[i] - focal_spot_position_mm[i])
# 2. calculate the angle rotation + offset and check it!
rotation_matrix = rotation_from_vecs(np.array([1, 0, 0]),-nearest_point_mm[i] +focal_spot_position_mm[i])
if i == 0:
first_rot = rotation_matrix.T
first_rot = np.eye(3)
angle = rotation_matrix @ first_rot
if not np.isclose(np.linalg.det(rotation_matrix), 1, 0.01):
raise ValueError('Rotation matrix must be right handed!')
rotation_inverse = Rotation.from_matrix(rotation_matrix.T)
offsets = rotation_inverse.apply(nearest_point_mm[i])
fod_mm[i] += offsets[0]
detector_offsets_mm[i, 0] = offsets[2] * 2
detector_offsets_mm[i, 1] = offsets[1] * 2
# calculate the relative rotation of the detector
detector_matrix = np.eye(3)
detector_matrix[:, 1] = detector_line_direction[i]
detector_matrix[:, 2] = detector_column_direction[i]
detector_matrix[:, 0] = np.cross(detector_matrix[:, 1], detector_matrix[:, 2])
if not np.isclose(np.linalg.det(detector_matrix), 1, 0.01):
raise ValueError('Rotation matrix must be right handed!')
# the rotation is from the angle rotation -> "real" rotation
relative_rotation_matrix = rotation_matrix.T @ detector_matrix
# relative_rotation_matrix = detector_matrix @ rotation_matrix.T -> wrong
relative_rotation = Rotation.from_matrix(relative_rotation_matrix)
euler_zyz[i] = Rotation.from_matrix(angle).as_euler('zyz', False)
euler_xyz[i] = relative_rotation.as_euler('xyz', False)
geometry.DSO = fod_mm
geometry.DSD = fdd_mm
geometry.offDetector = detector_offsets_mm
geometry.rotDetector = euler_xyz
geometry.angles = euler_zyz
return geometry
def euler_from_vecs(a_vec,b_vec,order="xyz"):
"""
Calculate Euler angles from two vectors
Parameters
----------
a_vec : np.array of (n,3) or (3,)
A vector(s).
b_vec : np.array of (n,3) or (3,)
B vector(s).
order : string, optional
Order of the euler angles in rotations. The default is "xyz".
Returns
-------
euler : np.array of (n,3) or (3,)
Euler angles of rotations.
"""
na = 1 if a_vec.ndim<2 else a_vec.shape[0]
nb = 1 if b_vec.ndim<2 else b_vec.shape[0]
n = max(na,nb)
a_vec = np.repeat([a_vec], n, axis=0) if a_vec.ndim<2 else a_vec
b_vec = np.repeat([b_vec], n, axis=0) if b_vec.ndim<2 else b_vec
euler = np.zeros_like(a_vec,dtype=np.float64)
for i in range(n):
R = rotation_from_vecs(a_vec[i,:],b_vec[i,:])
euler[i,:] = Rotation.from_matrix(R).as_euler(order)
for j in range(3):
if abs(euler[i,j]) < 2e-8: # very small angle
euler[i,j] = 0
return euler
def rotation_from_vecs(v1, v2):
"""
Compute a matrix R that rotates v1 to align with v2.
v1 and v2 must be length-3 1d numpy arrays.
"""
# unit vectors
u = v1 / np.linalg.norm(v1)
Ru = v2 / np.linalg.norm(v2)
# dimension of the space and identity
I = np.identity(u.size)
# the cos angle between the vectors (dot product)
c = np.dot(u, Ru)
# a small number
eps = 1.0e-9
if np.abs(c - 1.0) < eps:
# same direction
return I
elif np.abs(c + 1.0) < eps:
# opposite direction
return -I
else:
# the cross product matrix of a vector to rotate around
v = np.cross(u, Ru)
K = np.array([[0,-v[2],v[1]],[v[2],0,-v[0]],[-v[1],v[0],0]])
# Rodrigues' formula
return I + K + (K @ K) / (1 + c)
def perpendicular_point_on_line(point: np.ndarray, line_point: np.ndarray, line_direction: np.ndarray):
ap = point - line_point
dot_product = np.dot(ap, line_direction)
line_squared = np.dot(line_direction, line_direction)
return line_point + (dot_product / line_squared) * line_direction
def calculate_trajectory_center_mm(focal_spot_position_mm: np.ndarray, detector_center_position_mm: np.ndarray):
number_of_projection = focal_spot_position_mm.shape[0]
A = np.zeros((number_of_projection * 6, 5))
b = np.zeros((number_of_projection * 6, 1))
print(f'Calculated FOD / ODD')
for i in range(0, number_of_projection * 6-1, 6):
ii = i // 6
source = focal_spot_position_mm[ii]
detector = detector_center_position_mm[ii]
direction = source - detector
direction = direction / np.linalg.norm(direction)
A[i, :] = np.array([1, 0, 0, direction[0], 0])
b[i] = source[0]
i=i+1
A[i, :] = np.array([0, 1, 0, direction[1], 0])
b[i] = source[1]
i=i+1
A[i, :] = np.array([0, 0, 1, direction[2], 0])
b[i] = source[2]
i=i+1
A[i, :] = np.array([1, 0, 0, 0, -direction[0]])
b[i] = detector[0]
i=i+1
A[i, :] = np.array([0, 1, 0, 0, -direction[1]])
b[i] = detector[1]
i=i+1
A[i, :] = np.array([0, 0, 1, 0, -direction[2]])
b[i] = detector[2]
i=i+1
res = np.linalg.lstsq(A, b)
trajectory_center_mm = np.array([res[0][0], res[0][1], res[0][2]]).reshape((1, 3))
return trajectory_center_mm