树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。
给你一棵包含 n
个节点的树,标记为 0
到 n - 1
。给定数字 n
和一个有 n - 1
条无向边的 edges
列表(每一个边都是一对标签),其中 edges[i] = [ai, bi]
表示树中节点 ai
和 bi
之间存在一条无向边。
可选择树中任何一个节点作为根。当选择节点 x
作为根节点时,设结果树的高度为 h
。在所有可能的树中,具有最小高度的树(即,min(h)
)被称为 最小高度树 。
请你找到所有的 最小高度树 并按 任意顺序 返回它们的根节点标签列表。
树的 高度 是指根节点和叶子节点之间最长向下路径上边的数量。
示例 1:
输入:n = 4, edges = [[1,0],[1,2],[1,3]] 输出:[1] 解释:如图所示,当根是标签为 1 的节点时,树的高度是 1 ,这是唯一的最小高度树。
示例 2:
输入:n = 6, edges = [[3,0],[3,1],[3,2],[3,4],[5,4]] 输出:[3,4]
示例 3:
输入:n = 1, edges = [] 输出:[0]
示例 4:
输入:n = 2, edges = [[0,1]] 输出:[0,1]
提示:
1 <= n <= 2 * 104
edges.length == n - 1
0 <= ai, bi < n
ai != bi
- 所有
(ai, bi)
互不相同 - 给定的输入 保证 是一棵树,并且 不会有重复的边