-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulation_main.py
410 lines (366 loc) · 16.4 KB
/
simulation_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import numpy as np
from derivative import dxdt
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
from tqdm import tqdm
import os
from copy import deepcopy
import time
import argparse
parser = argparse.ArgumentParser(description='Online label shifting-multi class')
parser.add_argument('--algo', type=str, default='const', help='[const, history_dist, fixed_history_dist, ogd, ogd_{lr}]')
parser.add_argument('--shift_process', type=str, default='constant_shift')
parser.add_argument('--dataset', type=str, default='cifar10', help='[cifar10, svhn]')
parser.add_argument('--model', type=str, default='resnet18', help='[resnet18, resnet50]')
parser.add_argument('--cal_stat', type=str, default='cal', help='[cal, no_cal]')
parser.add_argument('--T', type=int, default=100000)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--smooth_k', type=int, default=3)
parser.add_argument('--grad_N', type=int, default=20)
parser.add_argument('--delta', type=float, default=0.01)
parser.add_argument('--conf_type', type=str, default="zero_one")
args = parser.parse_args()
print(args)
def load_val_preds_y_conf_mat(dataset, model, cal_stat="cal"):
checkpoint = torch.load("data_preparation/val_{}_{}_{}.pt".format(dataset, model, cal_stat))
val_preds = checkpoint["val_preds"]
val_y = checkpoint["val_y"]
val_conf_mat = checkpoint["conf_mat"].numpy()
return val_preds, val_y, val_conf_mat
def smooth(y, k):
box = np.ones(2 * k + 1)/ (2 * k + 1)
y = np.concatenate([np.ones(k)*y[0], y, np.ones(k)*y[-1]])
y_smooth = np.convolve(y, box, mode='valid')
return y_smooth
def load_numerical_grad_func(numerical_loss):
def compute_grad(i_p_N, delta=args.delta):
(i, p, q, N, numerical_loss) = i_p_N
ps = np.concatenate([np.expand_dims(p, axis=0) for j in range(N)], axis=0)
p_i_s = p[i] + (np.arange(N) - int(N/2)) * delta
ps[:, i] = p_i_s
func_vals = np.asarray([numerical_loss(grid_p, q) for grid_p in ps])
func_vals = smooth(func_vals, k=args.smooth_k)
grads_i = dxdt(func_vals[np.logical_and(p_i_s >= 0, p_i_s <= 1)], p_i_s[np.logical_and(p_i_s >= 0, p_i_s <= 1)], kind="finite_difference", k=3)
return grads_i[p_i_s[np.logical_and(p_i_s >= 0, p_i_s <= 1)] == p[i]]
def numerical_loss_grad(p, q, N=args.grad_N):
i_p_q_N_list = [(i, deepcopy(p), deepcopy(q), N, deepcopy(numerical_loss)) for i in range(len(p))]
results = [compute_grad(i_p_q_N) for i_p_q_N in i_p_q_N_list]
grad = np.asarray(results).squeeze()
return grad
return numerical_loss_grad
def load_numerical_grad_func_fast(val_preds, val_y, p_train):
val_preds_div_p_train = val_preds / p_train
def numerical_loss_grad(p, q):
grad = np.zeros(num_classes)
for i in range(num_classes):
if_i = (val_y == i)
b = val_preds_div_p_train[if_i]
ai = val_preds_div_p_train[if_i, i]
sum_bi_pi = (b * p).sum(1)
grad += -( b.transpose() / (sum_bi_pi ** 2) * ai * p[i]).mean(1) * q[i]
grad[i] += (ai / sum_bi_pi).mean() * q[i]
return -grad
return numerical_loss_grad
def load_numerical_loss_func(val_preds, val_y, p_train):
val_preds_div_p_train = val_preds / p_train
def numerical_loss(p, q):
adjust_preds = val_preds_div_p_train * p
conf_diag = np.zeros(len(p))
conf_diag = np.asarray([(np.argmax(adjust_preds[val_y == i], axis=1) == i).mean() for i in range(len(p))])
return (1 - conf_diag).dot(q)
return numerical_loss
def history_dist_algo(base_pred_list, p_cur):
q_pred_hist = np.asarray([(base_pred_list == i).mean() for i in range(d)])
p_next = q_pred_hist.dot(inv_val_conf_mat)
return p_next
def const_algo(base_pred_list, p_cur):
p_next = p_cur
return p_next
def projection_simplex_sort(v, z=1):
n_features = v.shape[0]
u = np.sort(v)[::-1]
cssv = np.cumsum(u) - z
ind = np.arange(n_features) + 1
cond = u - cssv / ind > 0
rho = ind[cond][-1]
theta = cssv[cond][-1] / float(rho)
w = np.maximum(v - theta, 0)
return w
def gd_constructor(lr, d, inv_val_conf_mat, eps_cube=None):
def gd(base_pred_list, p_cur):
q_vec = np.zeros([d])
q_vec[base_pred_list[-1]] = 1
mean_q = q_vec.dot(inv_val_conf_mat)
grad = loss_grad_func(p_cur, mean_q)
p_next = p_cur - lr * grad
if eps_cube is None:
return projection_simplex_sort(p_next)
else:
p_next_new = projection_simplex_sort(np.clip(p_next, eps_cube, 1 - eps_cube))
while np.linalg.norm(p_next_new - p_next) >= 1e-4:
p_next = p_next_new
p_next_new = projection_simplex_sort(np.clip(p_next, eps_cube, 1 - eps_cube))
return p_next_new
return gd
def exp_gd_constructor(lr, d, inv_val_conf_mat, eps_cube=None):
def exp_gd(base_pred_list, p_cur):
q_vec = np.zeros([d])
q_vec[base_pred_list[-1]] = 1
mean_q = q_vec.dot(inv_val_conf_mat)
grad = loss_grad_func(p_cur, mean_q)
p_next = p_cur * np.exp(-lr * grad)
p_next = p_next / p_next.sum()
return p_next
return exp_gd
def fix_length_history_constructor(window_size, d, inv_val_conf_mat, eps_cube=None):
def fix_length_history_dist_algo(base_pred_list, p_cur):
q_pred_hist = np.asarray([(base_pred_list[-window_size:] == i).mean() for i in range(d)])
p_next = q_pred_hist.dot(inv_val_conf_mat)
return p_next
return fix_length_history_dist_algo
def follow_the_leader_constructor(lr, steps):
def follow_the_leader(base_pred_list, p_cur):
q_pred_hist = np.asarray([(base_pred_list == i).mean() for i in range(d)])
q_hist = q_pred_hist.dot(inv_val_conf_mat)
q_hist = np.ones(d) / d
p_next = p_cur
for step in range(steps):
p_next = projection_simplex_sort(p_next - lr * loss_grad_func(p_next, q_hist))
print(f"step: {step}; loss: {loss_func(p_next, q_hist)}")
return p_next
return follow_the_leader
def generate_test_probs_and_ys(q_all):
np.random.seed(args.seed)
ys = np.squeeze(np.asarray([np.random.choice(10, 1, p=q) for q in q_all]))
num_test = len(ys)
probs = np.zeros([num_test, num_classes])
for i in range(num_classes):
num_i = (ys == i).sum()
if num_i == 0:
continue
num_test_i = (test_y == i).sum()
sampled_indices = np.random.randint(0, num_test_i, num_i)
probs[ys == i] = test_preds[test_y == i][sampled_indices]
np.random.seed(int(time.time()))
return probs, ys
def find_opt(q, init_p, lr=1e-1, max_T=40):
p_cur = init_p
grad = loss_grad_func(p_cur, q)
p_next = projection_simplex_sort(p_cur - lr * grad)
min_loss = loss_func(p_next, q)
opt_p = p_next
for i in range(max_T):
print(loss_func(p_cur, q), np.linalg.norm(grad))
p_cur = p_next
grad = loss_grad_func(p_cur, q)
p_next = projection_simplex_sort(p_cur - lr * grad)
if loss_func(p_next, q) < min_loss:
min_loss = loss_func(p_next, q)
opt_p = p_next
if i >= 2/3*max_T:
lr=lr / 10
return opt_p
def online_process(probs, ys, algos, p_train, seed=0, verbose=False, checkpoint=None):
T = len(ys)
base_pred_y = np.argmax(probs, axis=1)
algo_name = [args.algo, "const"]
if checkpoint is None:
loss = np.zeros([len(algos), T])
p_vec = []
for i in range(len(algos)):
if algo_name[i] == "opt_const":
p_vec.append(np.asarray(q_all).mean(0))
if algo_name[i] == "true_opt_const":
checkpoint_path = "checkpoint/opt_p{}_{}_{}_{}_{}_{}.pt".format(pre_name, args.dataset, args.model, args.cal_stat, args.T, args.shift_process)
if os.path.exists(checkpoint_path):
opt_p = torch.load(checkpoint_path)
else:
opt_p = find_opt(np.asarray(q_all).mean(0), init_p=np.asarray(q_all).mean(0), lr=1e-2)
torch.save(opt_p, checkpoint_path)
p_vec.append(opt_p)
else:
p_vec.append(p_train)
if verbose:
p_hist = [p_vec]
start_T=0
else:
start_T = checkpoint["t"] + 1
p_hist = checkpoint["p_hist"]
loss = checkpoint["loss"]
p_vec = p_hist[-1]
pbar = tqdm(range(start_T, T), total=T-start_T)
for t in pbar:
for i, algo in enumerate(algos):
adjust_prob = probs[t] * p_vec[i] / p_train
pred = np.argmax(adjust_prob)
base_pred_y[t] = np.argmax(probs[t])
loss[i, t] = (pred != ys[t]).astype(np.float)
p_vec[i] = algo(base_pred_y[:t+1], p_vec[i])
if verbose:
p_hist.append(deepcopy(p_vec))
if t%1000== 0 or t == T-1:
pbar.set_description(" ".join(["Alg {}: {:.4f}".format(algo_name[i], loss[i, :t+1].mean()) for i in range(len(algos))]))
checkpoint = {}
checkpoint["t"] = t
checkpoint["p_hist"] = p_hist
checkpoint["loss"] = loss
torch.save(checkpoint, "checkpoint/online_checkpoint_{}_{}_{}_{}_{}_{}{}.pt".format(dataset, model, cal_stat, T, args.shift_process, args.algo, pre_name))
if verbose:
return loss.mean(1), loss, p_hist
else:
return loss.mean(1)
def constant_shift_constructor(q):
def constant_shift(T):
return np.concatenate([np.expand_dims(q, axis=0) for t in range(T)], axis=0)
return constant_shift
def monotone_shift_constructor(q1, q2):
def monotone_shift(T):
lamb = 1.0 / (T-1)
return np.concatenate([np.expand_dims(q1 * (1 - lamb * t) + q2 * lamb * t, axis=0) for t in range(T)], axis=0)
return monotone_shift
def period_shift_constructor(q1, q2, T_p):
def period_shift(T):
return np.concatenate([np.expand_dims(q1 * (1 - int(int(t / T_p)%2 > 0)) + q2 * int(int(t / T_p)%2 > 0), axis=0) for t in range(T)], axis=0)
return period_shift
def period_continuous_shift_constructor(q1, q2, T_p):
def period_continuous_shift(T):
return np.concatenate([np.expand_dims((q1 * (1 - float(t%T_p) / T_p) + q2 * (float(t%T_p) / T_p)) * (1 - int(int(t / T_p)%2 > 0)) + (q2 * (1 - float(t%T_p) / T_p) + q1 * (float(t%T_p) / T_p)) * int(int(t / T_p)%2 > 0), axis=0) for t in range(T)], axis=0)
return period_continuous_shift
def exp_period_shift_constructor(q1, q2, k=2):
def exp_period_shift(T):
return np.concatenate([np.expand_dims(q1 * (1 - int(int(np.log(t+1) / np.log(k))%2 > 0)) + q2 * int(int(np.log(t+1) / np.log(k))%2 > 0), axis=0) for t in range(T)], axis=0)
return exp_period_shift
def uniform_sample_from_simplex(d):
x = np.random.rand(d - 1)
x = x[np.argsort(x)]
return np.concatenate([x, np.ones(1)]) - np.concatenate([np.zeros(1), x])
if not os.path.exists("./checkpoint"):
os.makedirs("checkpoint")
pre_name = ""
if (args.smooth_k != 3) or (args.grad_N != 20) or (args.delta != 0.01):
pre_name = f"_{args.smooth_k}_{args.grad_N}_{args.delta}"
if args.conf_type != "zero_one":
pre_name = pre_name + f"_{args.conf_type}"
eps_cube = 0.01
else:
eps_cube = None
if args.seed is not None:
pre_name = pre_name + f"_{args.seed}"
dataset = args.dataset
model = args.model
T = args.T
cal_stat = args.cal_stat
val_preds, val_y, val_conf_mat = load_val_preds_y_conf_mat(dataset, model, cal_stat)
val_preds = nn.Softmax()(torch.from_numpy(val_preds)).numpy()
d = val_conf_mat.shape[0]
checkpoint = torch.load("data_preparation/test_{}_{}_{}.pt".format(dataset, model, cal_stat))
test_preds = checkpoint["test_preds"]
test_y = checkpoint["y"]
p_train = checkpoint["p_train"]
test_preds = nn.Softmax()(torch.from_numpy(test_preds)).numpy()
val_preds_div_p_train = val_preds / p_train
num_classes = np.max(test_y) + 1
loss_func = load_numerical_loss_func(val_preds, val_y, p_train)
if args.conf_type == "zero_one":
loss_grad_func = load_numerical_grad_func(loss_func)
elif args.conf_type == "prob":
loss_grad_func = load_numerical_grad_func_fast(val_preds, val_y, p_train)
inv_val_conf_mat = np.linalg.inv(val_conf_mat)
if (not os.path.exists("checkpoint/max_M{}_{}_{}_{}_{}.pt".format(pre_name, eps_cube, dataset, model, cal_stat))) and (args.algo == "ogd"):
M = 0
max_p = None
max_j = None
sample_num = 100
for i1 in tqdm(range(d)):
if eps_cube is not None:
p = np.ones(d) * eps_cube
p[i1] = 1 - (d -1) * eps_cube
p = p / p.sum()
else:
p = np.zeros(d)
p[i1] = 1
for j in range(d):
q_hat = inv_val_conf_mat[j]
grad_norm = np.linalg.norm(loss_grad_func(p, q_hat))
if grad_norm > M:
M = grad_norm
max_p = p
max_j = j
np.random.seed(0)
rand_P_list = [uniform_sample_from_simplex(d) for _ in range(sample_num)]
for p in tqdm([np.ones(d)/d] + rand_P_list):
if eps_cube is not None:
p_proj = p
p_proj_new = projection_simplex_sort(np.clip(p, eps_cube, 1 - eps_cube))
while np.linalg.norm(p_proj_new - p_proj) >= 1e-4:
p_proj = p_proj_new
p_proj_new = projection_simplex_sort(np.clip(p_proj, eps_cube, 1 - eps_cube))
p = p_proj_new
for j in range(d):
pred_vec = np.zeros(d)
pred_vec[j] = 1
q_hat = pred_vec.dot(inv_val_conf_mat)
grad_norm = np.linalg.norm(loss_grad_func(p, q_hat))
if grad_norm > M:
M = grad_norm
max_p = p
max_j = j
np.random.seed(int(time.time()))
torch.save({"M" : M, "max_p": max_p, "max_j": max_j}, "checkpoint/max_M{}_{}_{}_{}_{}.pt".format(pre_name, eps_cube, dataset, model, cal_stat))
if args.shift_process == "constant_shift":
maj_class = 3
q_const = np.ones(num_classes) * 0.05
q_const[maj_class] = 1 - (q_const.sum() - q_const[maj_class])
shift_proccess = constant_shift_constructor(q_const)
elif args.shift_process == "monotone_shift":
maj_class_1 = 3
maj_class_2 = 5
q1 = np.ones(num_classes) * 0.05
q1[maj_class_1] = 1 - (q1.sum() - q1[maj_class_1])
q2 = np.ones(num_classes) * 0.05
q2[maj_class_2] = 1 - (q2.sum() - q2[maj_class_2])
shift_proccess = monotone_shift_constructor(q1, q2)
elif args.shift_process.startswith("exp_period_shift"):
maj_class_1 = 3
maj_class_2 = 5
q1 = np.ones(num_classes) * 0.05
q1[maj_class_1] = 1 - (q1.sum() - q1[maj_class_1])
q2 = np.ones(num_classes) * 0.05
q2[maj_class_2] = 1 - (q2.sum() - q2[maj_class_2])
shift_proccess = exp_period_shift_constructor(q1, q2, k=float(args.shift_process.split("_")[-1]))
elif args.shift_process.startswith("period_shift"):
maj_class_1 = 3
maj_class_2 = 5
q1 = np.ones(num_classes) * 0.05
q1[maj_class_1] = 1 - (q1.sum() - q1[maj_class_1])
q2 = np.ones(num_classes) * 0.05
q2[maj_class_2] = 1 - (q2.sum() - q2[maj_class_2])
shift_proccess = period_shift_constructor(q1, q2, T_p=int(args.shift_process.split("_")[-1]))
q_all = shift_proccess(T)
probs, ys = generate_test_probs_and_ys(q_all)
q_dist = np.asarray(q_all).mean(0)
if args.algo == "fth":
algo = history_dist_algo
elif args.algo.startswith("ftfwh"):
algo = fix_length_history_constructor(window_size=int(args.algo.split("_")[-1]), d=d, inv_val_conf_mat=inv_val_conf_mat, eps_cube=eps_cube)
elif args.algo == "ogd":
M = torch.load("checkpoint/max_M{}_{}_{}_{}_{}.pt".format(pre_name, eps_cube, dataset, model, cal_stat))["M"]
print("lr: {}".format(1 / (np.sqrt(T / 2) * M)))
algo = gd_constructor(lr=1 / (np.sqrt(T / 2) * M), d=d, inv_val_conf_mat=inv_val_conf_mat, eps_cube=eps_cube)
elif args.algo.startswith("ogd"):
lr = float(args.algo.split("_")[1])
algo = gd_constructor(lr=lr, d=d, inv_val_conf_mat=inv_val_conf_mat, eps_cube=eps_cube)
elif args.algo == "const":
algo = const_algo
elif args.algo == "opt_const":
algo = const_algo
checkpoint = None
checkpoint_path = "checkpoint/online_checkpoint_{}_{}_{}_{}_{}_{}{}.pt".format(dataset, model, cal_stat, T, args.shift_process, args.algo, pre_name)
if os.path.exists(checkpoint_path):
try:
checkpoint = torch.load(checkpoint_path)
except:
checkpoint = None
algos = [algo, const_algo]
loss_mean, loss, p_hist = online_process(probs, ys, algos, p_train, verbose=True, checkpoint=checkpoint)