@@ -72,7 +72,7 @@ We will walk through by way of example, using :meth:`~WrightTools.data.from_JASC
72
72
else :
73
73
data = parent.create_data(** kwargs)
74
74
# array
75
- ds = np.DataSource(None )
75
+ ds = np.lib.npyio. DataSource(None )
76
76
f = ds.open(filestr, " rt" )
77
77
arr = np.genfromtxt(f, skip_header = 18 ).T
78
78
f.close()
@@ -249,7 +249,7 @@ For one-dimensional data formats, this is particularly easy:
249
249
.. code-block :: python
250
250
251
251
# array
252
- ds = np.DataSource(None )
252
+ ds = np.lib.npyio. DataSource(None )
253
253
f = ds.open(filestr, " rt" )
254
254
arr = np.genfromtxt(f, skip_header = 18 ).T
255
255
f.close()
@@ -260,7 +260,7 @@ For one-dimensional data formats, this is particularly easy:
260
260
:class: `numpy.DataSource ` is a class which provides transparent decompression and remote file retrieval.
261
261
:func: `numpy.genfromtxt ` will handle this itself, however it will leave the downloaded files in the
262
262
working directory, and opening explicitly allows you to use the file more directly as well.
263
- Using ``np .DataSource(None) `` causes it to use temporary files which are removed automatically.
263
+ Using ``numpy.lib.npyio .DataSource(None) `` causes it to use temporary files which are removed automatically.
264
264
Opening in ``"rt" `` mode ensures that you are reading as text.
265
265
266
266
Parsing multidimensional datasets (and in particular formats which allow arbitrary dimensionality)
0 commit comments