forked from kellenf/TSP_collection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PSO.py
executable file
·260 lines (231 loc) · 8.6 KB
/
PSO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import random
import math
import numpy as np
import matplotlib.pyplot as plt
class PSO(object):
def __init__(self, num_city, data):
self.iter_max = 500 # 迭代数目
self.num = 200 # 粒子数目
self.num_city = num_city # 城市数
self.location = data # 城市的位置坐标
# 计算距离矩阵
self.dis_mat = self.compute_dis_mat(num_city, self.location) # 计算城市之间的距离矩阵
# 初始化所有粒子
# self.particals = self.random_init(self.num, num_city)
self.particals = self.greedy_init(self.dis_mat,num_total=self.num,num_city =num_city)
self.lenths = self.compute_paths(self.particals)
# 得到初始化群体的最优解
init_l = min(self.lenths)
init_index = self.lenths.index(init_l)
init_path = self.particals[init_index]
# 画出初始的路径图
init_show = self.location[init_path]
# 记录每个个体的当前最优解
self.local_best = self.particals
self.local_best_len = self.lenths
# 记录当前的全局最优解,长度是iteration
self.global_best = init_path
self.global_best_len = init_l
# 输出解
self.best_l = self.global_best_len
self.best_path = self.global_best
# 存储每次迭代的结果,画出收敛图
self.iter_x = [0]
self.iter_y = [init_l]
def greedy_init(self, dis_mat, num_total, num_city):
start_index = 0
result = []
for i in range(num_total):
rest = [x for x in range(0, num_city)]
# 所有起始点都已经生成了
if start_index >= num_city:
start_index = np.random.randint(0, num_city)
result.append(result[start_index].copy())
continue
current = start_index
rest.remove(current)
# 找到一条最近邻路径
result_one = [current]
while len(rest) != 0:
tmp_min = math.inf
tmp_choose = -1
for x in rest:
if dis_mat[current][x] < tmp_min:
tmp_min = dis_mat[current][x]
tmp_choose = x
current = tmp_choose
result_one.append(tmp_choose)
rest.remove(tmp_choose)
result.append(result_one)
start_index += 1
return result
# 随机初始化
def random_init(self, num_total, num_city):
tmp = [x for x in range(num_city)]
result = []
for i in range(num_total):
random.shuffle(tmp)
result.append(tmp.copy())
return result
# 计算不同城市之间的距离
def compute_dis_mat(self, num_city, location):
dis_mat = np.zeros((num_city, num_city))
for i in range(num_city):
for j in range(num_city):
if i == j:
dis_mat[i][j] = np.inf
continue
a = location[i]
b = location[j]
tmp = np.sqrt(sum([(x[0] - x[1]) ** 2 for x in zip(a, b)]))
dis_mat[i][j] = tmp
return dis_mat
# 计算一条路径的长度
def compute_pathlen(self, path, dis_mat):
a = path[0]
b = path[-1]
result = dis_mat[a][b]
for i in range(len(path) - 1):
a = path[i]
b = path[i + 1]
result += dis_mat[a][b]
return result
# 计算一个群体的长度
def compute_paths(self, paths):
result = []
for one in paths:
length = self.compute_pathlen(one, self.dis_mat)
result.append(length)
return result
# 评估当前的群体
def eval_particals(self):
min_lenth = min(self.lenths)
min_index = self.lenths.index(min_lenth)
cur_path = self.particals[min_index]
# 更新当前的全局最优
if min_lenth < self.global_best_len:
self.global_best_len = min_lenth
self.global_best = cur_path
# 更新当前的个体最优
for i, l in enumerate(self.lenths):
if l < self.local_best_len[i]:
self.local_best_len[i] = l
self.local_best[i] = self.particals[i]
# 粒子交叉
def cross(self, cur, best):
one = cur.copy()
l = [t for t in range(self.num_city)]
t = np.random.choice(l,2)
x = min(t)
y = max(t)
cross_part = best[x:y]
tmp = []
for t in one:
if t in cross_part:
continue
tmp.append(t)
# 两种交叉方法
one = tmp + cross_part
l1 = self.compute_pathlen(one, self.dis_mat)
one2 = cross_part + tmp
l2 = self.compute_pathlen(one2, self.dis_mat)
if l1<l2:
return one, l1
else:
return one, l2
# 粒子变异
def mutate(self, one):
one = one.copy()
l = [t for t in range(self.num_city)]
t = np.random.choice(l, 2)
x, y = min(t), max(t)
one[x], one[y] = one[y], one[x]
l2 = self.compute_pathlen(one,self.dis_mat)
return one, l2
# 迭代操作
def pso(self):
for cnt in range(1, self.iter_max):
# 更新粒子群
for i, one in enumerate(self.particals):
tmp_l = self.lenths[i]
# 与当前个体局部最优解进行交叉
new_one, new_l = self.cross(one, self.local_best[i])
if new_l < self.best_l:
self.best_l = tmp_l
self.best_path = one
if new_l < tmp_l or np.random.rand()<0.1:
one = new_one
tmp_l = new_l
# 与当前全局最优解进行交叉
new_one, new_l = self.cross(one, self.global_best)
if new_l < self.best_l:
self.best_l = tmp_l
self.best_path = one
if new_l < tmp_l or np.random.rand()<0.1:
one = new_one
tmp_l = new_l
# 变异
one, tmp_l = self.mutate(one)
if new_l < self.best_l:
self.best_l = tmp_l
self.best_path = one
if new_l < tmp_l or np.random.rand()<0.1:
one = new_one
tmp_l = new_l
# 更新该粒子
self.particals[i] = one
self.lenths[i] = tmp_l
# 评估粒子群,更新个体局部最优和个体当前全局最优
self.eval_particals()
# 更新输出解
if self.global_best_len < self.best_l:
self.best_l = self.global_best_len
self.best_path = self.global_best
print(cnt, self.best_l)
self.iter_x.append(cnt)
self.iter_y.append(self.best_l)
return self.best_l, self.best_path
def run(self):
best_length, best_path = self.pso()
# 画出最终路径
return self.location[best_path], best_length
# 读取数据
def read_tsp(path):
lines = open(path, 'r').readlines()
assert 'NODE_COORD_SECTION\n' in lines
index = lines.index('NODE_COORD_SECTION\n')
data = lines[index + 1:-1]
tmp = []
for line in data:
line = line.strip().split(' ')
if line[0] == 'EOF':
continue
tmpline = []
for x in line:
if x == '':
continue
else:
tmpline.append(float(x))
if tmpline == []:
continue
tmp.append(tmpline)
data = tmp
return data
data = read_tsp('data/st70.tsp')
data = np.array(data)
data = data[:, 1:]
# 加上一行因为会回到起点
show_data = np.vstack([data, data[0]])
model = PSO(num_city=data.shape[0], data=data.copy())
Best_path, Best = model.run()
Best_path = np.vstack([Best_path, Best_path[0]])
fig, axs = plt.subplots(2, 1, sharex=False, sharey=False)
axs[0].scatter(Best_path[:, 0], Best_path[:,1])
Best_path = np.vstack([Best_path, Best_path[0]])
axs[0].plot(Best_path[:, 0], Best_path[:, 1])
axs[0].set_title('规划结果')
iterations = model.iter_x
best_record = model.iter_y
axs[1].plot(iterations, best_record)
axs[1].set_title('收敛曲线')
plt.show()