forked from FeiSun/word2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Word2Vec.cpp
495 lines (419 loc) · 11.9 KB
/
Word2Vec.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#include "Word2Vec.h"
inline bool comp(Word *w1, Word *w2)
{
return w1->count > w2->count;
}
Word2Vec::~Word2Vec(void)
{
}
Word2Vec::Word2Vec(int iter, int window, int min_count, int table_size, int word_dim, int negative,
float subsample_threshold, float init_alpha, float min_alpha, bool cbow_mean, int num_threads, string train_method, string model):
iter(iter), window(window), min_count(min_count), table_size(table_size), word_dim(word_dim),
negative(negative), subsample_threshold(subsample_threshold), init_alpha(init_alpha),
min_alpha(min_alpha), num_threads(num_threads), train_method(train_method), model(model), generator(rd()),
uni_dis(0.0, 1.0), distribution_window(0, window < 1 ? 0 : window - 1), distribution_table(0, table_size - 1){}
vector<vector<string>> Word2Vec::line_docs(string filename)
{
vector<vector<string>> sentences;
ifstream in(filename);
string s;
while (std::getline(in, s))
{
istringstream iss(s);
sentences.emplace_back(istream_iterator<string>{iss}, istream_iterator<string>{});
}
return std::move(sentences);
}
void Word2Vec::create_huffman_tree()
{
size_t vocab_size = vocab.size();
vector<Word *> heap = vocab;
make_heap(heap.begin(), heap.end(), comp);
for(size_t i = 0; i < vocab_size - 1; ++i)
{
pop_heap(heap.begin(), heap.end(), comp);
Word *min_left = heap.back(); heap.pop_back();
pop_heap(heap.begin(), heap.end(), comp);
Word *min_right = heap.back(); heap.pop_back();
Word *w = new Word(i + vocab_size, min_left->count + min_right->count, "", min_left, min_right);
heap.push_back(w);
push_heap(heap.begin(), heap.end(), comp);
}
//traverse huffman tree,get code
list<tuple<Word *, vector<size_t>, vector<size_t>>> stack;
stack.push_back(make_tuple(heap[0], vector<size_t>(), vector<size_t>()));
while(!stack.empty())
{
auto n = stack.back();
stack.pop_back();
Word *n_w = get<0>(n);
if(n_w->index < vocab_size)
{
n_w->codes = get<1>(n);
n_w->points = get<2>(n);
}
else
{
auto codes_left = get<1>(n);
auto codes_right = codes_left;
codes_left.push_back(0);
codes_right.push_back(1);
auto points = get<2>(n);
points.emplace_back(n_w->index - vocab_size);
stack.emplace_back(make_tuple(n_w->left, codes_left, points));
stack.emplace_back(make_tuple(n_w->right, codes_right, points));
}
}
}
void Word2Vec::make_table()
{
table.resize(table_size);
size_t vocab_size = vocab.size();
float power = 0.75f;
float train_words_pow = 0.0f;
vector<float> word_range(vocab.size());
for(size_t i = 0; i != vocab_size; ++i)
{
word_range[i] = pow((float)vocab[i]->count, power);
train_words_pow += word_range[i];
}
size_t idx = 0;
float d1 = word_range[idx] / train_words_pow;
float scope = table_size * d1;
for(int i = 0; i < table_size; ++i)
{
table[i] = idx;
if(i > scope && idx < vocab_size - 1)
{
d1 += word_range[++idx] / train_words_pow;
scope = table_size * d1;
}
else if(idx == vocab_size - 1)
{
for(; i < table_size; ++i)
table[i] = idx;
break;
}
}
}
void Word2Vec::precalc_sampling()
{
size_t vocab_size = vocab.size();
long total_words = 0;
for(auto v: vocab)
total_words += v->count;
float threshold_count = subsample_threshold * total_words;
if(subsample_threshold > 0)
for(const auto& v: vocab)
v->sample_probability = std::min(float((sqrt(v->count / threshold_count) + 1) * threshold_count / v->count), (float)1.0);
else
for(const auto& v: vocab)
v->sample_probability = 1.0;
}
void Word2Vec::build_vocab(vector<vector<string>> &sentences)
{
unordered_map<string, int> word_cn;
for(auto& sentence: sentences)
for(auto& w: sentence)
if(word_cn.count(w) > 0)
word_cn[w]++;
else
word_cn[w] = 1;
for(auto kv: word_cn)
{
if(kv.second < min_count)
continue;
Word *w = new Word(0, kv.second, kv.first);
vocab.push_back(w);
vocab_hash[w->text] = WordP(w);
}
//update word index
size_t vocab_size = vocab.size();
sort(vocab.begin(), vocab.end(), comp);
for(uint32_t i = 0; i < vocab_size; i++)
{
vocab[i]->index = i;
idx2word.push_back(vocab[i]->text);
}
if(train_method == "hs")
create_huffman_tree();
if(negative)
make_table();
precalc_sampling();
}
void Word2Vec::save_vocab(string vocab_filename)
{
ofstream out(vocab_filename, std::ofstream::out);
for(auto& v: vocab)
out << v->index << " " << v->count << " " << v->text << endl;
out.close();
}
void Word2Vec::read_vocab(string vocab_filename)
{
ifstream in(vocab_filename);
string s;
while (std::getline(in, s))
{
istringstream iss(s);
size_t index, count;
string text;
iss >> index >> count >>text;
Word *w = new Word(index, count, text);
vocab.push_back(w);
vocab_hash[w->text] = WordP(w);
}
in.close();
}
void Word2Vec::init_weights(size_t vocab_size)
{
std::uniform_real_distribution<float> distribution(-0.5, 0.5);
auto uniform = [&] (int) {return distribution(generator);};
W = RMatrixXf::NullaryExpr(vocab_size, word_dim, uniform);
W = W / (float)word_dim ;
if(train_method == "hs")
synapses1 =RMatrixXf::Zero(vocab_size - 1, word_dim);
else if(train_method == "ns")
C = RMatrixXf::Zero(vocab_size, word_dim);
}
vector<vector<Word *>> Word2Vec::build_sample(vector<vector<string>> & data)
{
vector<vector<Word *>> samples;
for(auto& sentence: data)
{
vector<Word *> sampled;
for(auto text: sentence)
{
auto it = vocab_hash.find(text);
if (it == vocab_hash.end()) continue;
Word *word = it->second.get();
sampled.push_back(word);
}
samples.push_back(std::move(sampled));
}
return std::move(samples);
}
RowVectorXf& Word2Vec::hierarchical_softmax(Word * predict_word, RowVectorXf& project_rep, RowVectorXf& project_grad, float alpha)
{
size_t code_len = predict_word->codes.size();
for(int i = 0; i < code_len; ++i)
{
size_t current_idx = predict_word->points[i];
float f = synapses1.row(current_idx).dot(project_rep);
f = 1.0 / (1.0 + exp(-f));
float g = (1.0 - predict_word->codes[i] - f) * alpha;
// Propagate errors output -> hidden
project_grad += g * synapses1.row(current_idx);
// Learn weights hidden -> output
synapses1.row(current_idx) += g * project_rep;
}
return project_grad;
}
RowVectorXf& Word2Vec::negative_sampling(Word * predict_word, RowVectorXf& project_rep, RowVectorXf& project_grad, RMatrixXf& target_matrix, float alpha)
{
unordered_map<size_t, uint8_t> targets;
for (int i = 0; i < negative; ++i)
targets[table[distribution_table(generator)]] = 0;
targets[predict_word->index] = 1;
for (auto it: targets)
{
auto l2 = target_matrix.row(it.first);
float f = l2.dot(project_rep);
f = 1.0 / (1 + exp(-f));
float g = (it.second - f) * alpha;
// Propagate errors output -> hidden
project_grad += g * l2;
// Learn weights hidden -> output
l2 += g * project_rep;
}
return project_grad;
}
void Word2Vec::train_sentence_cbow(vector<Word *>& sentence, float alpha)
{
RowVectorXf neu1 = RowVectorXf::Zero(word_dim);
RowVectorXf neu1_grad = RowVectorXf::Zero(word_dim);
size_t len = sentence.size();
for (int i = 0; i < len; ++i)
{
Word* current_word = sentence[i];
if(current_word->sample_probability < uni_dis(generator))
continue;
int reduced_window = distribution_window(generator);
int index_begin = max(0, i - window + reduced_window);
int index_end = min((int)len, i + window + 1 - reduced_window);
int neu1_num = index_end - index_begin - 1;
if (neu1_num <= 0) continue;
//input->projecten
neu1.setZero();
neu1_grad.setZero();
set<size_t> idx;
for(int j = index_begin; j < index_end; ++j)
{
if (j == i) continue;
idx.insert(sentence[j]->index);
}
for(auto id: idx) neu1 += C.row(id);
if(cbow_mean)
neu1 /= (float)neu1_num;
if(train_method == "hs")
{
neu1_grad = hierarchical_softmax(current_word, neu1, neu1_grad, alpha);
}
if (negative > 0)
{
neu1_grad = negative_sampling(current_word, neu1, neu1_grad, W, alpha);
}
// hidden -> in
if(cbow_mean)
neu1_grad /= (float)neu1_num;
for(auto id: idx) C.row(id) += neu1_grad;
}
}
void Word2Vec::train_sentence_sg(vector<Word *>& sentence, float alpha)
{
RowVectorXf neu1 = RowVectorXf::Zero(word_dim);
RowVectorXf neu1_grad = RowVectorXf::Zero(word_dim);
auto len = sentence.size();
for (int i = 0; i < len; ++i)
{
Word* current_word = sentence[i];
neu1_grad.setZero();
neu1 = W.row(current_word->index);
if(current_word->sample_probability < uni_dis(generator))
continue;
int reduced_window = distribution_window(generator);
int index_begin = max(0, i - window + reduced_window);
int index_end = min((int)len, i + window + 1 - reduced_window);
for(int j = index_begin; j < index_end; ++j)
{
if(j == i) continue;
if(train_method == "hs")
{
neu1_grad = hierarchical_softmax(sentence[j], neu1, neu1_grad, alpha);
}
if(negative > 0)
{
neu1_grad = negative_sampling(sentence[j], neu1, neu1_grad, C, alpha);
}
}
W.row(sentence[i]->index) += neu1_grad;
}
}
void Word2Vec::train(vector<vector<string>> &sentences)
{
init_weights(vocab.size());
long long current_words = 0;
long long train_words = 0;
for(auto& sentence: sentences)
train_words += sentence.size();
vector<vector<Word *>> samples = build_sample(sentences);
vector<long> sample_idx(samples.size());
std::iota(sample_idx.begin(), sample_idx.end(), 0);
float alpha = init_alpha;
for(int it = 0; it < iter; ++it)
{
std::shuffle(sample_idx.begin(), sample_idx.end(), generator);
#pragma omp parallel for
for(int i = 0; i < sample_idx.size(); ++i)
{
int s_id = sample_idx[i];
if(i % 10 == 0)
alpha = std::max(min_alpha, float(init_alpha * (1.0 - 1.0 / iter * current_words / train_words)));
if(i % 100 == 0)
{
printf("\rinit_alpha: %f Progress: %f%% ", alpha, 100.0 / iter * current_words / train_words);
std::fflush(stdout);
}
if(model == "cbow")
train_sentence_cbow(samples[s_id], alpha);
else if(model == "sg")
train_sentence_sg(samples[s_id], alpha);
#pragma omp atomic
current_words += samples[s_id].size();
}
}
}
void Word2Vec::save_word2vec(string filename, const RMatrixXf& data, bool binary)
{
IOFormat CommaInitFmt(StreamPrecision, DontAlignCols);
if(binary)
{
std::ofstream out(filename, std::ios::binary);
char blank = ' ';
char enter = '\n';
int size = sizeof(char);
int r_size = data.cols() * sizeof(RMatrixXf::Scalar);
RMatrixXf::Index r = data.rows();
RMatrixXf::Index c = data.cols();
out.write((char*) &r, sizeof(RMatrixXf::Index));
out.write(&blank, size);
out.write((char*) &c, sizeof(RMatrixXf::Index));
out.write(&enter, size);
for(auto v: vocab)
{
out.write(v->text.c_str(), v->text.size());
out.write(&blank, size);
out.write((char*) data.row(v->index).data(), r_size);
out.write(&enter, size);
}
out.close();
}
else
{
ofstream out(filename);
out << data.rows() << " " << data.cols() << std::endl;
for(auto v: vocab)
{
out << v->text << " " << data.row(v->index).format(CommaInitFmt) << endl;;
}
out.close();
}
}
void Word2Vec::load_word2vec(string filename, bool binary)
{
if(binary)
{
ifstream in(filename, std::ios::binary);
char temp_char;
int size = sizeof(char);
RMatrixXf::Index r;
RMatrixXf::Index c;
in.read((char*) &r, sizeof(RMatrixXf::Index));
in.read(&temp_char, size);
in.read((char*) &c, sizeof(RMatrixXf::Index));
in.read(&temp_char, size);
int r_size = c * sizeof(RMatrixXf::Scalar);
for(int i = 0; i < r; ++i)
{
string text = "";
in.read(&temp_char, size);
while(temp_char != ' ')
{
text += temp_char;
in.read(&temp_char, size);
}
in.read((char*) W.row(vocab_hash[text]->index).data(), r_size);
in.read(&temp_char, size);
}
in.close();
}
else
{
ifstream in(filename);
string s, text;
std::getline(in, s);
size_t vocab_size, word_dim;
istringstream iss(s);
iss >> vocab_size >> word_dim;
while (std::getline(in, s))
{
istringstream iss(s);
iss >> text;
auto w2v = W.row(vocab_hash[text]->index);
for(int i = 0; i < word_dim; ++i)
{
iss >> w2v[i];
}
}
in.close();
}
}