-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathmerge_classifier_match_label.py
315 lines (279 loc) · 14.1 KB
/
merge_classifier_match_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#! /usr/bin/python
# encoding=utf-8
# author wangyong
"""
merge result for domain identification and intent recognition
"""
import sys
import logging
logging.basicConfig(format='%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s',
level=logging.DEBUG)
# none
MAXCLASS_NONE_HIGHSCORE = 0.93 # 0.6
MAXCLASS_NONE_MIDSCORE = 0.9 # 0.4
#attention: MAXCLASS_NONE_HIGHSCORE must >= MAXCLASS_NONE_MIDSCORE
assert MAXCLASS_NONE_HIGHSCORE >= MAXCLASS_NONE_MIDSCORE
MINCLASS_NONE_HIGHSCORE1 = 0.8
MINCLASS_NONE_HIGHSCORE2 = 0.75
MINCLASS_NONE_MIDSCORE1 = 0.65
MINCLASS_NONE_MIDSCORE2 = 0.65
assert MINCLASS_NONE_HIGHSCORE1 >= MINCLASS_NONE_MIDSCORE1
assert MINCLASS_NONE_HIGHSCORE2 >= MINCLASS_NONE_MIDSCORE2
# list
MAXCLASS_LIST_HIGHSCORE = 0.9
MAXCLASS_LIST_MIDSCORE = 0.65
assert MAXCLASS_LIST_HIGHSCORE >= MAXCLASS_LIST_MIDSCORE
MINCLASS_LIST_HIGHSCORE1 = 0.9
MINCLASS_LIST_HIGHSCORE2 = 0.9
MINCLASS_LIST_MIDSCORE1 = 0.4
MINCLASS_LIST_MIDSCORE2 = 0.5
assert MINCLASS_LIST_HIGHSCORE1 >= MINCLASS_LIST_MIDSCORE1
assert MINCLASS_LIST_HIGHSCORE2 >= MINCLASS_LIST_MIDSCORE2
# only
MAXCLASS_ONLY_HIGHSCORE = 0.9
MINCLASS_ONLY_HIGHSCORE1 = 0.01
MINCLASS_ONLY_HIGHSCORE2 = 0.01
MINCLASS_ONLY_MIDSCORE1 = 0.01
MINCLASS_ONLY_MIDSCORE2 = 0.01
assert MINCLASS_ONLY_HIGHSCORE1 >= MINCLASS_ONLY_MIDSCORE1
assert MINCLASS_ONLY_HIGHSCORE2 >= MINCLASS_ONLY_MIDSCORE2
MINCLASS_ZERO_SCORE = 0.00001
MINCLASS_HIGH_SCORE_ONLY = 0.65
MINCLASS_MID_SCORE_ONLY = 0.55
assert MINCLASS_HIGH_SCORE_ONLY >= MINCLASS_MID_SCORE_ONLY
MINCLASS_NUM = 3
class LabelScore:
def __init__(self):
self.label = ''
self.score = 0
class MergeObj(object):
def __init__(self):
self.real_max_label = ''
self.real_min_label = ''
self.pre_max_top_label = ''
self.pre_max_top_score = 0
self.pre_min_top_label = ''
self.pre_min_top_score = 0
self.pre_min_label_scores = [0]
self.merge_result = ''
def get_max2min_label(max_min_class_file_dir):
min_max_m = {}
max_min_class_file = open(max_min_class_file_dir, 'r', encoding='utf-8')
for line in max_min_class_file.readlines():
mems = line.split("\t")
max_label = mems[0]
min_label = mems[1]
min_max_m[min_label] = max_label
max_min_class_file.close()
return min_max_m
def get_pre_label_scores(max_pre_file_d, min_pre_file_d):
merge_items = []
max_pre_file = open(max_pre_file_d, 'r', encoding='utf-8')
for line in max_pre_file.readlines():
line_items = line.split("\t")
real_top_max_label = line_items[0]
pre_top_max_label = line_items[2].split(' ')[0].split(":")[0]
pre_top_max_score = float(line_items[2].split(' ')[0].split(":")[1])
mer_obj = MergeObj()
mer_obj.pre_max_top_label = pre_top_max_label
mer_obj.pre_max_top_score = float(pre_top_max_score)
mer_obj.real_max_label = real_top_max_label
merge_items.append(mer_obj)
max_pre_file.close()
min_pre_file = open(min_pre_file_d, 'r', encoding='utf-8')
index = 0
for line in min_pre_file.readlines():
mer_obj = merge_items[index]
index = index + 1
line_items = line.split("\t")
real_min_label = line_items[0]
label_scores_list = line_items[2].split(" ")
pre_top_min_label = label_scores_list[0].split(":")[0]
pre_top_min_score = float(label_scores_list[0].split(":")[1])
mer_obj.real_min_label = real_min_label
mer_obj.pre_min_top_label = pre_top_min_label
mer_obj.pre_min_top_score = pre_top_min_score
mer_obj.pre_min_label_scores = []
scores_list = mer_obj.pre_min_label_scores
for i in range(len(label_scores_list)):
label_score = LabelScore()
temp_labels = label_scores_list[i].split(":")
if len(temp_labels) < 2:
continue
label_score.label = temp_labels[0]
label_score.score = float(temp_labels[1])
scores_list.append(label_score)
min_pre_file.close()
return merge_items
def get_merge_result_each(str_type, merge_item):
assert str_type in ('__label__none', '__label__only', '__label__list')
if str_type == "__label__none":
merge_item.merge_result = "__label__none"
elif str_type == "__label__only":
merge_item.merge_result = merge_item.pre_min_top_label + ":" + str(merge_item.pre_min_top_score)
elif str_type == "__label__list":
merge_item.merge_result = ""
for i in range(len(merge_item.pre_min_label_scores)):
if i == MINCLASS_NUM:
break
label = merge_item.pre_min_label_scores[i].label
score = merge_item.pre_min_label_scores[i].score
if score < MINCLASS_ZERO_SCORE:
break
merge_item.merge_result = merge_item.merge_result + label + ":" + str(score) + ","
def get_only_list_none_result(high_score, low_score, merge_item):
if merge_item.pre_min_top_score >= high_score: # one answer
get_merge_result_each("__label__only", merge_item)
elif merge_item.pre_min_top_score < high_score and merge_item.pre_min_top_score >= low_score: # list answer
get_merge_result_each("__label__list", merge_item)
else: # refuse to answer
get_merge_result_each("__label__none", merge_item)
def get_merge_result(merge_items, min_max_m):
for merge_item in merge_items:
if merge_item.pre_max_top_label == "__label__none": # none
if merge_item.pre_max_top_score >= MAXCLASS_NONE_HIGHSCORE: # direct rejection
get_merge_result_each("__label__none", merge_item)
elif merge_item.pre_max_top_score >= MAXCLASS_NONE_MIDSCORE and merge_item.pre_max_top_score < MAXCLASS_NONE_HIGHSCORE: # tendency to reject
get_only_list_none_result(MINCLASS_NONE_HIGHSCORE1, MINCLASS_NONE_MIDSCORE1, merge_item)
else: # not tendency to reject
get_only_list_none_result(MINCLASS_NONE_HIGHSCORE2, MINCLASS_NONE_MIDSCORE2, merge_item)
elif merge_item.pre_max_top_label == "__label__list": # list
if merge_item.pre_max_top_score >= MAXCLASS_LIST_HIGHSCORE: # direct answer a list
get_merge_result_each("__label__list", merge_item)
elif merge_item.pre_max_top_score >= MAXCLASS_LIST_MIDSCORE and merge_item.pre_max_top_score < MAXCLASS_LIST_HIGHSCORE: # tendency to answer list
get_only_list_none_result(MINCLASS_LIST_HIGHSCORE1, MINCLASS_LIST_MIDSCORE1, merge_item)
else: # not tendency to answer list
get_only_list_none_result(MINCLASS_LIST_HIGHSCORE2, MINCLASS_LIST_MIDSCORE2, merge_item)
else: # only
filter_pre_min_label_scores = []
for label_score in merge_item.pre_min_label_scores:
max_label = min_max_m[label_score.label]
if max_label != merge_item.pre_max_top_label:
continue
filter_pre_min_label_scores.append(label_score)
merge_item.pre_min_label_scores = filter_pre_min_label_scores
if len(filter_pre_min_label_scores) == 0: # direct rejection
get_merge_result_each("__label__none", merge_item)
else:
merge_item.pre_min_top_label = filter_pre_min_label_scores[0].label
merge_item.pre_min_top_score = filter_pre_min_label_scores[0].score
if merge_item.pre_max_top_score >= MAXCLASS_ONLY_HIGHSCORE: # not tendency to reject
get_only_list_none_result(MINCLASS_ONLY_HIGHSCORE1, MINCLASS_ONLY_MIDSCORE1, merge_item)
else: # not tendency to one answer
get_only_list_none_result(MINCLASS_ONLY_HIGHSCORE2, MINCLASS_ONLY_MIDSCORE2, merge_item)
def write_result(merge_items, result_file_d):
min_pre_file = open(result_file_d, 'w', encoding='utf-8')
for merge_item in merge_items:
min_pre_file.write(merge_item.real_max_label + "\t" + merge_item.real_min_label
+ "\t" + merge_item.merge_result + "\n")
min_pre_file.close()
def get_result_by_min(min_pre_file_dir, result_file_dir):
with open(min_pre_file_dir, 'r', encoding='utf-8') as f_pre_min:
with open(result_file_dir, 'w', encoding='utf-8') as f_res:
for line in f_pre_min:
lines = line.strip().split('\t')
real_label = lines[0]
model_label_scores = lines[2].split(' ')
temp_label_score_list = []
write_str = '__label__0\t' + str(real_label) + '\t'
for label_score in model_label_scores:
label_scores = label_score.split(':')
temp_label_score = LabelScore()
temp_label_score.label = label_scores[0]
temp_label_score.score = (float)(label_scores[1])
temp_label_score_list.append(temp_label_score)
if temp_label_score_list[0].score < MINCLASS_MID_SCORE_ONLY: # refuse answer
write_str += '__label__none'
elif temp_label_score_list[0].score >= MINCLASS_MID_SCORE_ONLY and temp_label_score_list[
0].score < MINCLASS_HIGH_SCORE_ONLY: # list answer
for i in range(len(temp_label_score_list)):
if i == MINCLASS_NUM:
break
write_str += str(temp_label_score_list[i].label) + ':' + str(
temp_label_score_list[i].score) + ','
else: # only answer
write_str += str(temp_label_score_list[0].label) + ':' + str(temp_label_score_list[0].score)
f_res.write(write_str + "\n")
def get_acc_recall_f1(result_file_dir):
only_real_num = 0
only_model_num = 0
only_right_num = 0
list_real_num = 0
list_model_num = 0
list_right_num = 0
none_real_num = 0
none_model_num = 0
none_right_num = 0
num = 0
with open(result_file_dir, 'r', encoding='utf-8') as f_pre:
for line in f_pre:
num = num + 1
lines = line.strip().split('\t')
if lines[1] == '0':
none_real_num = none_real_num + 1
elif ',' in lines[1]:
list_real_num = list_real_num + 1
else:
only_real_num = only_real_num + 1
model_label_scores = lines[2].split(',')
if lines[2] == '__label__none':
none_model_num = none_model_num + 1
elif len(model_label_scores) == 1:
only_model_num = only_model_num + 1
else:
list_model_num = list_model_num + 1
real_labels_set = set(lines[1].split(','))
if lines[1] == '0' and lines[2] == '__label__none':
none_right_num = none_right_num + 1
if len(real_labels_set) == 1 and len(model_label_scores) == 1 and lines[1] == lines[2].split(':')[0]:
only_right_num = only_right_num + 1
if len(real_labels_set) > 1 and len(model_label_scores) > 1:
for i in range(len(model_label_scores)):
label_scores = model_label_scores[i].split(":")
if label_scores[0] in real_labels_set:
list_right_num = list_right_num + 1
break
logging.info('none_right_num: ' + str(none_right_num) + ', list_right_num: ' + str(list_right_num)
+ ', only_right_num: ' + str(only_right_num))
logging.info('none_real_num: ' + str(none_real_num) + ', list_real_num: ' + str(list_real_num)
+ ', only_real_num: ' + str(only_real_num))
logging.info('none_model_num: ' + str(none_model_num) + ', list_model_num: ' + str(list_model_num)
+ ', only_model_num: ' + str(only_model_num))
all_right_num = list_right_num + only_right_num
all_real_num = list_real_num + only_real_num
all_model_num = list_model_num + only_model_num
logging.info('all_right_num: ' + str(all_right_num) + ', all_real_num: ' + str(all_real_num)
+ ', all_model_num: ' + str(all_model_num))
all_acc = all_right_num / all_model_num
all_recall = all_right_num / all_real_num
all_f1 = 2 * all_acc * all_recall / (all_acc + all_recall)
logging.info("all_acc: " + str(all_acc) + ", all_recall: " + str(all_recall) + ", all_f1: " + str(all_f1))
only_acc = only_right_num / only_model_num
only_recall = only_right_num / only_real_num
only_f1 = 2 * only_acc * only_recall / (only_acc + only_recall)
logging.info("only_acc: " + str(only_acc) + ", only_recall: " + str(only_recall) + ", only_f1: " + str(
only_f1) + ", only_real_prop: " + str(only_real_num / num) + ", only_model_prop: " + str(only_model_num / num))
list_acc = list_right_num / list_model_num
list_recall = list_right_num / list_real_num
list_f1 = 2 * list_acc * list_recall / (list_acc + list_recall)
logging.info("list_acc: " + str(list_acc) + ", list_recall: " + str(list_recall) + ", list_f1: " + str(
list_f1) + ", list_real_prop: " + str(list_real_num / num) + ", list_model_prop: " + str(list_model_num / num))
none_acc = none_right_num / none_model_num
none_recall = none_right_num / none_real_num
none_f1 = 2 * none_acc * none_recall / (none_acc + none_recall)
logging.info("none_acc: " + str(none_acc) + ", none_recall: " + str(none_recall) + ", none_f1: " + str(
none_f1) + ", none_real_prop: " + str(none_real_num / num) + ", none_model_prop: " + str(none_model_num / num))
if __name__ == "__main__":
max_pre_file_dir = sys.argv[1]
min_pre_file_dir = sys.argv[2]
result_file_dir = sys.argv[3]
std_label_ques = sys.argv[4]
if max_pre_file_dir == 'none' or std_label_ques == 'none': # only use min_pre result
get_result_by_min(min_pre_file_dir, result_file_dir)
else: # merge max_pre result and min_pre result
merge_items_list = get_pre_label_scores(max_pre_file_dir, min_pre_file_dir)
min_max_map = get_max2min_label(std_label_ques)
get_merge_result(merge_items_list, min_max_map)
write_result(merge_items_list, result_file_dir)
# get acc recall f1
get_acc_recall_f1(result_file_dir)