-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_EHTTransEncoder.py
868 lines (716 loc) · 41.4 KB
/
train_EHTTransEncoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
from copy import Error
import os
import argparse
from argparse import ArgumentParser
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
from torchvision.utils import save_image
#import pylab as plt
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.gridspec as gridspec
from pytorch_lightning.plugins import DDPPlugin
#from context_encoder.vae import VAE
import context_encoder.encoders as m_encoder
from mlp import PosEncodedMLP_FiLM
#from data import AstroMNIST_Sparse
#from data_galaxy10 import Galaxy10_Dataset_Sparse
from data_continuous_EHT import EHTIM_Dataset
from data_ehtim_cont import make_dirtyim, make_im_torch
from sklearn.metrics import mean_squared_error as mse
from skimage.metrics import structural_similarity as ssim
#import astro_utils
from scipy import interpolate
from numpy.fft import fft2, ifft2, fftshift, ifftshift
import socket
hostname= socket.gethostname()
if hostname!= 'NV':
matplotlib.use('Agg')
class ImplicitAstro_Trans(pl.LightningModule):
def __init__(
self, args,
learning_rate=1e-4, L_embed=5,
input_encoding='fourier', sigma=2.5,
hidden_dims=[256,256],
latent_dim=64, kl_coeff=100.0,
num_fourier_coeff=32, batch_size=16,
input_size=28, model_checkpoint='', ngpu=None):
super().__init__()
self.save_hyperparameters()
self.loss_func = nn.MSELoss(reduction='mean')
self.loss_type = args.loss_type
self.ngpu = ngpu
self.use_unet= False
self.uv_dense_sparse_index=None
self.num_fourier_coeff = num_fourier_coeff
self.scale_loss_image= False #args.scale_loss_image
if self.use_unet:
import unet.unet_model as unet
if self.loss_type=='unet_direct':
self.UNET=unet.UNet(2, 1) #input: sparse visibility map; output: image
else:
self.UNET=unet.UNet(2, 2) #input: sparse visibility map; output: dense visibility map
else:
self.cond_mlp = PosEncodedMLP_FiLM(
context_dim=latent_dim,
input_size=2, output_size=2,
hidden_dims=hidden_dims,
L_embed=L_embed, embed_type=input_encoding,
activation=nn.ReLU,
sigma=sigma,
context_type='Transformer')
encoder = m_encoder.Visibility_Transformer(
input_dim=2, #value dim
# PE dim for MLP, we are going to use the same PE as the MLP
pe_dim=self.cond_mlp.input_size,
dim=512, depth=4, heads=16,
dim_head=512//16,
output_dim=latent_dim,
dropout=.1, emb_dropout=0.,
mlp_dim=512,
output_tokens=args.mlp_layers,
has_global_token=False)
self.pe_encoder = self.cond_mlp.embed_fun
self.context_encoder = encoder
print(self.cond_mlp)
print(encoder)
self.norm_fact=None
self.numEpoch = 0
self.uv_arr= None
self.U, self.V= None, None
self.uv_coords_grid_query= None
#validation plots
self.folder_val = f'{args.val_fldr}/imgs/'
self.folder_anim = f'{args.val_fldr}/anims/'
os.makedirs(self.folder_val, exist_ok=True)
os.makedirs(self.folder_anim, exist_ok=True)
self.numPlot = 0
self.plotFreq = 10
# testing
self.test_iter = 0
self.test_log_step = 50
self.test_zs = []
self.test_imgs = []
self.test_fldr= f'../test_res/{args.exp_name}'
def forward(self, x, z):
pred_visibilities = self.cond_mlp(x, context=z)
return pred_visibilities
def _f(self, x):
return ((x+0.5)%1)-0.5
def inference_w_conjugate(self, uv_coords, z, nF=0, return_np=True):
halfspace = self._get_halfspace(uv_coords)
# does this modify visibilities in place?
uv_coords_flipped = self._flip_uv(uv_coords, halfspace)
pred_visibilities = self(uv_coords_flipped, z)
pred_vis_real = pred_visibilities[:,:,0]
pred_vis_imag = pred_visibilities[:,:,1]
pred_vis_imag[halfspace] = -pred_vis_imag[halfspace]
if nF == 0: nF = self.hparams.num_fourier_coeff
pred_vis_imag = pred_vis_imag.reshape((-1, nF, nF))
pred_vis_real = pred_vis_real.reshape((-1, nF, nF))
pred_vis_imag[:,0,0] = 0
pred_vis_imag[:,0,nF//2] = 0
pred_vis_imag[:,nF//2,0] = 0
pred_vis_imag[:,nF//2,nF//2] = 0
if return_np:
pred_fft = pred_vis_real.detach().cpu().numpy() + 1j*pred_vis_imag.detach().cpu().numpy()
else:
pred_fft = pred_vis_real + 1j*pred_vis_imag
# NEW: set border to zero to counteract weird border issues
pred_fft[:,0,:] = 0.0
pred_fft[:,:,0] = 0.0
pred_fft[:,:,-1] = 0.0
pred_fft[:,-1,:] = 0.0
return pred_fft
def _get_halfspace(self, uv_coords):
#left_halfspace = torch.logical_and(uv_coords[:,0] > 0, uv_coords[:,1] > 0)
left_halfspace = torch.logical_and(torch.logical_or(
uv_coords[:,:,0] < 0,
torch.logical_and(uv_coords[:,:,0] == 0, uv_coords[:,:,1] > 0)),
~torch.logical_and(uv_coords[:,:,0] == -.5, uv_coords[:,:,1] > 0))
return left_halfspace
def _conjugate_vis(self, vis, halfspace):
# take complex conjugate if flipped uv coords
# so network doesn't receive confusing gradient information
vis[halfspace] = torch.conj(vis[halfspace])
return vis
def _flip_uv(self, uv_coords, halfspace):
halfspace_2d = torch.stack((halfspace, halfspace), axis=-1)
uv_coords_flipped = torch.where(halfspace_2d, self._f(-uv_coords), uv_coords)
'''plt.figure()
for i in range(3):
plt.plot(uv_coords[i,:,0].cpu(), uv_coords[i,:,1].cpu(), 'x', alpha=0.5)
plt.plot(uv_coords_flipped[i,:,0].cpu(), uv_coords_flipped[i,:,1].cpu(), 'o', alpha=0.5)
plt.show()'''
return uv_coords_flipped
def _recon_image_rfft(self, uv_dense, z, imsize, max_base, eht_fov, ):
#get the query uv's
B= uv_dense.shape[0]
img_res=imsize[0]
uv_dense_per=uv_dense[0]
u_dense, v_dense= uv_dense_per[:,0].unique(), uv_dense_per[:,1].unique()
u_dense= torch.linspace( u_dense.min(), u_dense.max(), len(u_dense)//2 * 2 + 1).to(u_dense)
v_dense= torch.linspace( v_dense.min(), v_dense.max(), len(v_dense)//2 * 2 + 1).to(u_dense)
uv_arr= torch.cat([u_dense.unsqueeze(-1), v_dense.unsqueeze(-1)], dim=-1)
scale_ux= max_base * eht_fov/ img_res
uv_arr= ((uv_arr+.5) * 2 -1.) * scale_ux # scaled input
U,V= torch.meshgrid(uv_arr[:,0], uv_arr[:,1])
uv_coords_grid_query= torch.cat((U.reshape(-1,1), V.reshape(-1,1)), dim=-1).unsqueeze(0).repeat(B,1,1)
#get predicted visibilities
pred_visibilities = self(uv_coords_grid_query, z) #Bx (HW) x 2
pred_visibilities_map= torch.view_as_complex(pred_visibilities).reshape(B, U.shape[0], U.shape[1])
img_recon = make_im_torch(uv_arr, pred_visibilities_map, img_res, eht_fov,
norm_fact=self.norm_fact if self.norm_fact is not None else 1.,
return_im=True)
return img_recon
def _step_image_loss(self, batch, batch_idx, num_zero_samples=0, loss_type='image',):
'''
forward pass then calculate the loss in the image domain
we will use rfft to ensure that the values in the image domain are real
'''
uv_coords, uv_dense, vis_sparse, visibilities, img_0s = batch
img_res= img_0s.shape[-1]
eht_fov = 1.4108078120287498e-09
max_base = 8368481300.0
scale_ux= max_base * eht_fov/ img_res
pe_uv = self.pe_encoder(uv_coords* scale_ux)
inputs_encoder = torch.cat([pe_uv, vis_sparse], dim=-1)
z = self.context_encoder(inputs_encoder)
B= uv_dense.shape[0]
nF= int( uv_dense.shape[1]**.5 )
#get the query uv's
if self.uv_coords_grid_query is None:
uv_dense_per=uv_dense[0]
u_dense, v_dense= uv_dense_per[:,0].unique(), uv_dense_per[:,1].unique()
u_dense= torch.linspace( u_dense.min(), u_dense.max(), len(u_dense)//2 * 2 ).to(u_dense)
v_dense= torch.linspace( v_dense.min(), v_dense.max(), len(v_dense)//2 * 2 ).to(u_dense)
uv_arr= torch.cat([u_dense.unsqueeze(-1), v_dense.unsqueeze(-1)], dim=-1)
uv_arr= ((uv_arr+.5) * 2 -1.) * scale_ux # scaled input
U,V= torch.meshgrid(uv_arr[:,0], uv_arr[:,1])
uv_coords_grid_query= torch.cat((U.reshape(-1,1), V.reshape(-1,1)), dim=-1).unsqueeze(0).repeat(B,1,1)
self.uv_arr= uv_arr
self.U, self.V= U,V
self.uv_coords_grid_query= uv_coords_grid_query
print('initilized self.uv_coords_grid_query')
#get predicted visibilities
pred_visibilities = self(self.uv_coords_grid_query, z) #Bx (HW) x 2
#image recon
if self.norm_fact is None: # get the normalization factor, which is fixed given image/spectral domain dimensions
visibilities_map= visibilities.reshape(-1, self.num_fourier_coeff, self.num_fourier_coeff)
uv_dense_physical = (uv_dense.detach().cpu().numpy()[0,:,:] +0.5)*(2*max_base) - (max_base)
_, _, norm_fact = make_dirtyim(uv_dense_physical,
visibilities_map.detach().cpu().numpy()[ 0, :, :].reshape(-1),
img_res, eht_fov, return_im=True)
self.norm_fact= norm_fact
print('initiliazed the norm fact')
#visibilities_map: B x len(u_dense) x len(v_dense)
pred_visibilities_map= torch.view_as_complex(pred_visibilities).reshape(B, self.U.shape[0], self.U.shape[1])
img_recon = make_im_torch(self.uv_arr, pred_visibilities_map, img_res, eht_fov, norm_fact=self.norm_fact, return_im=True)
vis_maps = visibilities.reshape(-1, self.num_fourier_coeff, self.num_fourier_coeff)
img_recon_gt= make_im_torch(self.uv_arr, vis_maps, img_res, eht_fov, norm_fact=self.norm_fact, return_im=True)
#energy in the frequency space
freq_norms = torch.sqrt(torch.sum(self.uv_coords_grid_query**2, -1))
abs_pred = torch.sqrt(pred_visibilities[:,:,0]**2 + pred_visibilities[:,:,1]**2)
energy = torch.mean(freq_norms*abs_pred)
if loss_type=='image':
# loss= (img_0s - img_recon.real ).abs().mean()
loss= (img_recon_gt.real - img_recon.real ).abs().mean()
return 0., 0., loss, loss, energy
# loss= pred_visibilities.abs().mean()
# return 0., 0., loss, loss,0.
else:
raise Error('undefined loss_type')
def _step_unet(self, batch, batch_idx, num_zero_samples=0):
# batch is a set of uv coords and complex visibilities
uv_coords, uv_dense, vis_sparse, visibilities, img = batch
B,img_res= img.shape[0], img.shape[-1]
###
#UNET
if self.uv_dense_sparse_index is None:
print('getting uv_dense_sparse_index...')
uv_coords_per= uv_coords[0] #S,2
uv_dense_per= uv_dense[0]#N,2
uv_dense_sparse_index= []
for i_sparse in range(uv_coords_per.shape[0]):
uv_coord= uv_coords_per[i_sparse]
uv_dense_equal= torch.logical_and(uv_dense_per[:,0]==uv_coord[0], uv_dense_per[:,1]==uv_coord[1])
uv_dense_sparse_index.append( uv_dense_equal.nonzero() )
uv_dense_sparse_index= torch.LongTensor(uv_dense_sparse_index,).to(uv_coords.device)
print('done')
self.uv_dense_sparse_index= uv_dense_sparse_index
#get the sparse visibility image (input to the UNet)
uv_dense_sparse_map= torch.zeros((uv_coords.shape[0], self.num_fourier_coeff**2, 2), ).to(uv_coords.device)
uv_dense_sparse_map[:,self.uv_dense_sparse_index,: ]=vis_sparse
uv_dense_sparse_map= uv_dense_sparse_map.permute(0, 2, 1).contiguous().reshape(-1, 2, self.num_fourier_coeff, self.num_fourier_coeff)
uv_dense_unet_output= self.UNET(uv_dense_sparse_map)# B,2,H,W or B,1,H,W
###
if self.loss_type in ('image', 'image_spectral'):
eht_fov = 1.4108078120287498e-09
max_base = 8368481300.0
scale_ux= max_base * eht_fov/ img_res
#get the query uv's
if self.uv_coords_grid_query is None:
uv_dense_per=uv_dense[0]
u_dense, v_dense= uv_dense_per[:,0].unique(), uv_dense_per[:,1].unique()
u_dense= torch.linspace( u_dense.min(), u_dense.max(), len(u_dense)//2 * 2 ).to(u_dense)
v_dense= torch.linspace( v_dense.min(), v_dense.max(), len(v_dense)//2 * 2 ).to(u_dense)
uv_arr= torch.cat([u_dense.unsqueeze(-1), v_dense.unsqueeze(-1)], dim=-1)
uv_arr= ((uv_arr+.5) * 2 -1.) * scale_ux # scaled input
U,V= torch.meshgrid(uv_arr[:,0], uv_arr[:,1])
uv_coords_grid_query= torch.cat((U.reshape(-1,1), V.reshape(-1,1)), dim=-1).unsqueeze(0).repeat(uv_coords.shape[0],1,1)
self.uv_arr= uv_arr
self.U, self.V= U,V
self.uv_coords_grid_query= uv_coords_grid_query
print('initilized self.uv_coords_grid_query')
#image recon
if self.norm_fact is None: # get the normalization factor, which is fixed given image/spectral domain dimensions
visibilities_map= visibilities.reshape(-1, self.num_fourier_coeff, self.num_fourier_coeff)
uv_dense_physical = (uv_dense.detach().cpu().numpy()[0,:,:] +0.5)*(2*max_base) - (max_base)
_, _, norm_fact = make_dirtyim(uv_dense_physical,
visibilities_map.detach().cpu().numpy()[ 0, :, :].reshape(-1),
img_res, eht_fov, return_im=True)
self.norm_fact= norm_fact
print('initiliazed the norm fact')
uv_dense_sparse_recon = torch.view_as_complex(uv_dense_unet_output.permute(0,2,3,1).contiguous()) # B,H,W
img_recon = make_im_torch(self.uv_arr, uv_dense_sparse_recon, img_res, eht_fov, norm_fact=self.norm_fact, return_im=True)
#image recon loss
loss= (img - img_recon.real ).abs().mean()
return 0., 0., loss, loss, 0.
elif self.loss_type in ('spectral'):
#spectral loss
vis_mat= torch.view_as_real(visibilities)
real_loss = self.loss_func(vis_mat[...,0], uv_dense_unet_output[:,0,...].reshape(B,-1) )
imaginary_loss = self.loss_func(vis_mat[...,1], uv_dense_unet_output[:,1,...].reshape(B,-1))
loss = real_loss + imaginary_loss
return real_loss, imaginary_loss, 0, loss, 0.
elif self.loss_type in ('unet_direct'):
loss= (img- uv_dense_unet_output.squeeze(1)).abs().mean()
return 0., 0., loss, loss, 0.
else:
raise Error(f'undefined loss_type {self.loss_type}')
def _step(self, batch, batch_idx, num_zero_samples=0):
# batch is a set of uv coords and complex visibilities
uv_coords, uv_dense, vis_sparse, visibilities, img = batch
pe_uv = self.pe_encoder(uv_coords)
inputs_encoder = torch.cat([pe_uv, vis_sparse], dim=-1)
z = self.context_encoder(inputs_encoder)
halfspace = self._get_halfspace(uv_dense)
uv_coords_flipped = self._flip_uv(uv_dense, halfspace)
vis_conj = self._conjugate_vis(visibilities, halfspace)
# now condition MLP on z #
pred_visibilities = self(uv_coords_flipped, z) #Bx HW x2
vis_real = vis_conj.real.float()
vis_imag = vis_conj.imag.float()
freq_norms = torch.sqrt(torch.sum(uv_dense**2, -1))
abs_pred = torch.sqrt(pred_visibilities[:,:,0]**2 + pred_visibilities[:,:,1]**2)
energy = torch.mean(freq_norms*abs_pred)
real_loss = self.loss_func(vis_real, pred_visibilities[:,:,0])
imaginary_loss = self.loss_func(vis_imag, pred_visibilities[:,:,1])
loss = real_loss + imaginary_loss
return real_loss, imaginary_loss, loss, energy
def training_step(self, batch, batch_idx, if_profile=False):
if if_profile:
print('start: training step')
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
if self.use_unet:
real_loss, imaginary_loss, image_loss, loss, energy= self._step_unet(batch, batch_idx)
elif self.loss_type=='spectral':
real_loss, imaginary_loss, loss, energy= self._step(batch, batch_idx)
elif self.loss_type=='image' or self.loss_type=='image_spectral':
real_loss, imaginary_loss, image_loss, loss, energy= self._step_image_loss(batch, batch_idx, loss_type=self.loss_type)
self.log('train/image_loss', image_loss,
sync_dist=True if self.ngpu > 1 else False,
rank_zero_only=True if self.ngpu > 1 else False,)
log_vars = [real_loss,
loss,
imaginary_loss,
energy]
log_names = ['train/real_loss',
'train/total_loss',
'train/imaginary_loss',
'train_metadata/energy']
for name, var in zip(log_names, log_vars):
self.log(name, var,
sync_dist=True if self.ngpu > 1 else False,
rank_zero_only=True if self.ngpu > 1 else False)
if if_profile:
end.record()
torch.cuda.synchronize()
print(f'one training step took {start.elapsed_time(end)}')
print('end: training step\n')
return loss
def test_step(self, batch, batch_idx):
os.makedirs(self.test_fldr, exist_ok=True)
uv_coords, uv_dense, vis_sparse, visibilities, img = batch
B= uv_dense.shape[0]
vis_maps = visibilities.reshape(-1, self.num_fourier_coeff, self.num_fourier_coeff)
eht_fov = 1.4108078120287498e-09
max_base = 8368481300.0
# img_res = self.hparams.input_size
img_res = img.shape[-1]
nF = self.hparams.num_fourier_coeff
scale_ux= max_base * eht_fov/ img_res
if not self.use_unet:
if self.loss_type=='spectral':
pe_uv = self.pe_encoder(uv_coords)
else:
pe_uv = self.pe_encoder(uv_coords*scale_ux)
inputs_encoder = torch.cat([pe_uv, vis_sparse], dim=-1)
z = self.context_encoder(inputs_encoder)
#get the query uv's
if self.uv_coords_grid_query is None:
uv_dense_per=uv_dense[0]
u_dense, v_dense= uv_dense_per[:,0].unique(), uv_dense_per[:,1].unique()
u_dense= torch.linspace( u_dense.min(), u_dense.max(), len(u_dense)//2 * 2 ).to(u_dense)
v_dense= torch.linspace( v_dense.min(), v_dense.max(), len(v_dense)//2 * 2 ).to(u_dense)
uv_arr= torch.cat([u_dense.unsqueeze(-1), v_dense.unsqueeze(-1)], dim=-1)
uv_arr= ((uv_arr+.5) * 2 -1.) * scale_ux # scaled input
U,V= torch.meshgrid(uv_arr[:,0], uv_arr[:,1])
uv_coords_grid_query= torch.cat((U.reshape(-1,1), V.reshape(-1,1)), dim=-1).unsqueeze(0).repeat(B,1,1)
self.uv_arr= uv_arr
self.U, self.V= U,V
self.uv_coords_grid_query= uv_coords_grid_query
print('initilized self.uv_coords_grid_query')
if self.norm_fact is None: # get the normalization factor, which is fixed given image/spectral domain dimensions
visibilities_map= visibilities.reshape(-1, self.num_fourier_coeff, self.num_fourier_coeff)
uv_dense_physical = (uv_dense.detach().cpu().numpy()[0,:,:] +0.5)*(2*max_base) - (max_base)
_, _, norm_fact = make_dirtyim(uv_dense_physical,
visibilities_map.detach().cpu().numpy()[ 0, :, :].reshape(-1),
img_res, eht_fov, return_im=True)
self.norm_fact= norm_fact
print('initiliazed the norm fact')
# reconstruct dirty image via eht-im
# constants for our current datasets; TODO: get from metadata
if self.use_unet:
if self.uv_dense_sparse_index is None:
print('getting uv_dense_sparse_index...')
uv_coords_per= uv_coords[0] #S,2
uv_dense_per= uv_dense[0]#N,2
uv_dense_sparse_index= []
for i_sparse in range(uv_coords_per.shape[0]):
uv_coord= uv_coords_per[i_sparse]
uv_dense_equal= torch.logical_and(uv_dense_per[:,0]==uv_coord[0], uv_dense_per[:,1]==uv_coord[1])
uv_dense_sparse_index.append( uv_dense_equal.nonzero() )
uv_dense_sparse_index= torch.LongTensor(uv_dense_sparse_index,).to(uv_coords.device)
print('done')
self.uv_dense_sparse_index= uv_dense_sparse_index
#get the sparse visibility image (input to the UNet)
uv_dense_sparse_map= torch.zeros((uv_coords.shape[0], self.num_fourier_coeff**2, 2), ).to(uv_coords.device)
uv_dense_sparse_map[:,self.uv_dense_sparse_index,: ]=vis_sparse
uv_dense_sparse_map= uv_dense_sparse_map.permute(0, 2, 1).contiguous().reshape(-1, 2, self.num_fourier_coeff, self.num_fourier_coeff)
uv_dense_unet_output= self.UNET(uv_dense_sparse_map)# B,2,H,W
uv_dense_unet_output= torch.view_as_complex(uv_dense_unet_output.permute(0,2,3,1).contiguous()) # B,H,W
img_recon = make_im_torch(self.uv_arr, uv_dense_unet_output, img_res, eht_fov, norm_fact=self.norm_fact, return_im=True)
img_recon_gt = img
img_recon = (img_recon.real).float() / img_recon.abs().max()
img_recon_gt = (img_recon_gt).float() / img_recon_gt.abs().max()
elif self.loss_type == 'spectral':
pred_fft = self.inference_w_conjugate(uv_dense, z, return_np=False)
uv_dense_physical = (uv_dense.detach().cpu().numpy()[0,:,:] +0.5)*(2*max_base) - (max_base)
img_recon = make_im_torch(self.uv_arr, pred_fft, img_res, eht_fov, norm_fact=self.norm_fact, return_im=True)
img_recon_gt= make_im_torch(self.uv_arr, vis_maps, img_res, eht_fov, norm_fact=self.norm_fact, return_im=True)
img_recon = (img_recon.real).float()
img_recon_gt = (img_recon_gt.real).float()
elif self.loss_type in ('image', 'image_spectral'):
pred_visibilities = self(self.uv_coords_grid_query, z) #Bx (HW) x 2
pred_visibilities_map= torch.view_as_complex(pred_visibilities).reshape(B, self.U.shape[0], self.U.shape[1])
img_recon = make_im_torch(self.uv_arr, pred_visibilities_map, img_res, eht_fov, norm_fact=self.norm_fact, return_im=True)
img_recon_gt= make_im_torch(self.uv_arr, vis_maps, img_res, eht_fov, norm_fact=self.norm_fact, return_im=True)
img_recon = (img_recon.real).float() / img_recon.abs().max()
img_recon_gt = (img_recon_gt.real).float() / img_recon_gt.abs().max()
img_log= torch.cat([img_recon_gt.reshape(-1, img.shape[-1]).cpu(), img_recon.reshape(-1, img_recon.shape[-1]).cpu()], dim=-1)
plt.imsave(f'{self.test_fldr}/img_recon_{batch_idx:05d}.png', img_log,cmap='hot')
def validation_step(self, batch, batch_idx):
uv_coords, uv_dense, vis_sparse, visibilities, img = batch
vis_maps = visibilities.reshape(-1, self.num_fourier_coeff, self.num_fourier_coeff)
eht_fov = 1.4108078120287498e-09
max_base = 8368481300.0
img_res=img.shape[-1]
scale_ux= max_base * eht_fov/ img_res
if batch_idx==0 and self.ngpu<=1 and not self.use_unet: # the first batch of samples of the epoch
if self.loss_type=='spectral':
pe_uv = self.pe_encoder(uv_coords)
elif self.loss_type in ('image', 'image_spectral'):
pe_uv = self.pe_encoder(uv_coords*scale_ux)
inputs_encoder = torch.cat([pe_uv, vis_sparse], dim=-1)
z = self.context_encoder(inputs_encoder)
img_res = self.hparams.input_size
nF = self.hparams.num_fourier_coeff
# reconstruct dirty image via eht-im
# constants for our current datasets; TODO: get from metadata
if self.loss_type == 'spectral':
pred_fft = self.inference_w_conjugate(uv_dense, z)
img_recon_raw = np.zeros((self.hparams.batch_size, img_res, img_res), dtype=np.complex128)
img_recon_gt = np.zeros((self.hparams.batch_size, img_res, img_res), dtype=np.complex128)
uv_dense_physical = (uv_dense.detach().cpu().numpy()[0,:,:] +0.5)*(2*max_base) - (max_base)
for i in range(self.hparams.batch_size):
img_recon_raw[i,:,:] = make_dirtyim(uv_dense_physical,
pred_fft[i,:,:].reshape(-1),
img_res, eht_fov).imarr()
img_recon_gt[i,:,:] = make_dirtyim(uv_dense_physical,
vis_maps.detach().cpu().numpy()[i,:,:].reshape(-1),
img_res, eht_fov).imarr()
img_recon = torch.from_numpy(img_recon_raw).float()
# add diagnostic figure:
fig = plt.figure(figsize=(14,16))
gs = gridspec.GridSpec(6,4, hspace=0.25, wspace=0.25)
for i in range(4):
gt_img = np.real(img_recon_gt[i,:,:]).astype('float32')
#gt_vis = np.abs(vis_maps.detach().cpu().numpy()[i,:,:])
gt_vis_re = np.real(vis_maps.detach().cpu().numpy()[i,:,:])
gt_vis_im = np.imag(vis_maps.detach().cpu().numpy()[i,:,:])
pred_img = img_recon.detach().cpu().numpy()[i,:,:]
#pred_vis = np.abs(pred_fft[i,:,:])
pred_vis_re = np.real(pred_fft[i,:,:])
pred_vis_im = np.imag(pred_fft[i,:,:])
vmin_img, vmax_img = np.min(gt_img), np.max(gt_img)
#vmin_vis, vmax_vis = np.min(gt_vis), np.max(gt_vis)
vmin_vis_re, vmax_vis_re = np.min(gt_vis_re), np.max(gt_vis_re)
vmin_vis_im, vmax_vis_im = np.min(gt_vis_im), np.max(gt_vis_im)
# GT spatial image
ax = plt.subplot(gs[0,i])
ax.set_title("[%i] Dense Grid Image \n$ \mathscr{F}^{-1}_{NU}[\mathcal{V}_{grid}(u,v)]$" %i, fontsize=10)
#im = ax.imshow(np.abs(img_recon_gt[i,:,:]))
im = ax.imshow(gt_img, vmin=vmin_img, vmax=vmax_img, cmap='afmhot')
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
# GT spectral (real)
ax = plt.subplot(gs[1,i])
ax.set_title("[%i] Dense Grid Fourier (Re) \n Re(${\mathcal{V}_{grid}(u,v)}$)" %i, fontsize=10)
im = ax.imshow(gt_vis_re, vmin=vmin_vis_re, vmax=vmax_vis_re)
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
# GT spectral (imaginary)
ax = plt.subplot(gs[2,i])
ax.set_title("[%i] Dense Grid Fourier (Im) \n Im(${\mathcal{V}_{grid}(u,v)}$)" %i, fontsize=10)
im = ax.imshow(gt_vis_im, vmin=vmin_vis_im, vmax=vmax_vis_im)
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
# Predicted spectral (real)
ax = plt.subplot(gs[3,i])
ax.set_title("[%i] Predicted Fourier (Re) \n Re(${\hat{\mathcal{V}}_{pred}(u,v)}$)" %i, fontsize=10)
im = ax.imshow(pred_vis_re, vmin=vmin_vis_re, vmax=vmax_vis_re)
ax.text(0.03, 0.97, f"MSE={mse(pred_vis_re, gt_vis_re):1.3e}", color='w', fontsize=8, ha='left', va='top', transform=ax.transAxes)
ax.text(0.03, 0.92, f"SSIM={ssim(pred_vis_re, gt_vis_re):1.3e}", color='w', fontsize=8, ha='left', va='top', transform=ax.transAxes)
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
# Predicted spectral (imaginary)
ax = plt.subplot(gs[4,i])
ax.set_title("[%i] Predicted Fourier (Im) \n Im(${\hat{\mathcal{V}}_{pred}(u,v)}$)" %i, fontsize=10)
im = ax.imshow(pred_vis_im, vmin=vmin_vis_im, vmax=vmax_vis_im)
ax.text(0.03, 0.97, f"MSE={mse(pred_vis_im, gt_vis_im):1.3e}", color='w', fontsize=8, ha='left', va='top', transform=ax.transAxes)
ax.text(0.03, 0.92, f"SSIM={ssim(pred_vis_im, gt_vis_im):1.3e}", color='w', fontsize=8, ha='left', va='top', transform=ax.transAxes)
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
# Reconstructed image from prediction
ax = plt.subplot(gs[5,i])
ax.set_title("[%i] Predicted Image \n$ \mathscr{F}^{-1}_{NU}[\hat{\mathcal{V}}_{pred}(u,v)]$" %i, fontsize=10)
im = ax.imshow(pred_img, vmin=vmin_img, vmax=vmax_img, cmap='afmhot')
ax.text(0.03, 0.97, f"MSE={mse(pred_img, gt_img):1.3e}", color='w', fontsize=8, ha='left', va='top', transform=ax.transAxes)
ax.text(0.03, 0.92, f"SSIM={ssim(pred_img, gt_img):1.3e}", color='w', fontsize=8, ha='left', va='top', transform=ax.transAxes)
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size='5%', pad=0.05)
fig.colorbar(im, cax=cax, orientation='vertical')
plt.savefig(f'{self.folder_val}/val{self.numPlot:04d}_pltrecon-batch_{batch_idx:04d}.png', bbox_inches='tight')
plt.clf()
save_image(img_recon.view((-1, 1, img_res, img_res)), f'{self.folder_val}/val%04d_recon-batch_%04d.png' % (self.numPlot, batch_idx), nrow=4)
save_image(img.view((-1, 1, img_res, img_res)), f'{self.folder_val}/val%04d_gt-batch_%04d.png' % (self.numPlot, batch_idx), nrow=4)
self.numPlot += 1
elif self.loss_type in ('image', 'image_spectral'):
img_recon_gt= img.cpu().numpy()
img_recon = self._recon_image_rfft(uv_dense, z, imsize=[img_res, img_res], max_base=max_base, eht_fov=eht_fov).real
save_image(img_recon.view((-1, 1, img_res, img_res)), f'{self.folder_val}/val%04d_recon-batch_%04d.png' % (self.numPlot, batch_idx), nrow=4)
save_image(img.view((-1, 1, img_res, img_res)), f'{self.folder_val}/val%04d_gt-batch_%04d.png' % (self.numPlot, batch_idx), nrow=4)
self.numPlot += 1
if self.use_unet:
return self._step_unet(batch, batch_idx)
elif self.loss_type=='spectral':
return self._step(batch, batch_idx)
elif self.loss_type in ('image', 'image_spectral'):
return self._step_image_loss(batch, batch_idx)
def validation_epoch_end(self, outputs):
pass
# avg_loss_real = torch.stack([x for x,y,z,w,s in outputs]).mean()
# avg_loss_imag = torch.stack([y for x,y,z,w,s in outputs]).mean()
# avg_loss = torch.stack([z for x,y,z,w,s in outputs]).mean()
# avg_energy = torch.stack([w for x,y,z,w,s in outputs]).mean()
# avg_kl = torch.stack([s for x,y,z,w,s in outputs]).mean()
# self.log('validation/total_loss', avg_loss)
# self.log('validation/real_loss', avg_loss_real)
# self.log('validation/imaginary_loss', avg_loss_imag)
# self.log('validation_metadata/energy', avg_energy)
def from_pretrained(self, checkpoint_name):
return self.load_from_checkpoint(checkpoint_name, strict=False)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--L_embed', type=int, default=128)
parser.add_argument('--input_encoding', type=str, choices=['fourier','nerf','none'], default='fourier')
parser.add_argument('--learning_rate', type=float, default=1e-4)
parser.add_argument('--sigma', type=float, default=5.0) #sigma=1 seems to underfit and 4 overfits/memorizes
parser.add_argument('--model_checkpoint', type=str, default='') #, default='./vae_flow_e2e_kl0.1_epoch139.ckpt')
parser.add_argument('--val_fldr', type=str, default=f'./val_fldr-test')
return parser
def parse_yaml(args,):
'''
Parse the yaml file, the settings in the yaml file are given higher priority
args:
argparse.Namespace
'''
import yaml
opt=vars(args)
opt_raw= vars(args).copy()
args_yaml= yaml.load(open(args.yaml_file), Loader=yaml.FullLoader)
opt.update(args_yaml,)
opt['eval'] =opt_raw['eval']
opt['exp_name'] =opt_raw['exp_name']
opt['dataset']= opt_raw['dataset']
opt['model_checkpoint'] =opt_raw['model_checkpoint']
opt['dataset_path']= opt_raw['dataset_path']
opt['data_path_imgs']= opt_raw['data_path_imgs']
opt['data_path_cont']= opt_raw['data_path_cont']
opt['loss_type']= opt_raw['loss_type']
opt['num_fourier']= opt_raw['num_fourier']
opt['input_size']= opt_raw['input_size']
args= argparse.Namespace(**opt)
return args
def cli_main():
pl.seed_everything(42)
# ------------
# args
# ------------
parser = ArgumentParser()
parser.add_argument('--exp_name', type=str, default='test') #default='Galaxy10_DECals_cont_mlp8')
parser.add_argument('--eval', action='store_true',
default=False, help='if evaluation mode [False]')
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--dataset', type=str,
# default='Galaxy10',
default='Galaxy10_DECals',
help='MNIST | Galaxy10 | Galaxy10_DECals')
parser.add_argument('--dataset_path', type=str,
#default=f'/astroim//data/eht_grid_256FC_200im_MNIST_full.h5',
#default=f'/astroim//data/eht_grid_256FC_200im_Galaxy10_full.h5',
#default=f'/astroim/data/eht_grid_256FC_200im_Galaxy10_DECals_full.h5',
# default=f'/astroim/data/eht_grid_256FC_200im_Galaxy10_DECals_test100.h5',
default=f'../data/eht_grid_256FC_200im_Galaxy10_DECals_full.h5',
# default=f'../data/eht_grid_128FC_200im_Galaxy10_full.h5',
help='dataset path to precomputed spectral data (dense grid and sparse grid)')
parser.add_argument('--data_path_cont', type=str,
#default=f'/astroim/data/eht_cont_200im_MNIST_full.h5',
# default=f'../data/eht_cont_200im_Galaxy10_full.h5',
# default=f'../data/eht_cont_200im_Galaxy10_DECals_full.h5',
# default=f'/astroim/data/eht_cont_200im_Galaxy10_DECals_full.h5',
default=None,
help='dataset path to precomputed spectral data (continuous)')
parser.add_argument('--data_path_imgs', type=str,
# default=None,
# default='../data/Galaxy10.h5',
default='../data/Galaxy10_DECals.h5',
help='dataset path to Galaxy10 images; for MNIST, it is by default at ./MNIST; if None, sets to 0s (faster, imgs usually not needed)')
parser.add_argument('--input_size', default=64, type=int)
parser.add_argument('--num_fourier', default=256, type=int)
parser.add_argument('--loss_type', type=str, default='spectral', help='spectral | image | spectral_image [spectral]')
parser.add_argument('--scale_loss_image', type=float, default=1., help='only valid if use spectral_image as the loss_type' )
parser.add_argument('--mlp_layers', default=8, type=int, help=' # of layers in mlp, this will also decide the # of tokens [8]')
parser.add_argument('--mlp_hidden_dim', default=256, type=int, help=' hidden dims in mlp [256]')
parser.add_argument('--m_epochs', default=1000, type=int, help= '# of max training epochs [1000]')
parser.add_argument('--yaml_file', default='', type=str, help ='path to yaml file')
parser = pl.Trainer.add_argparse_args(parser) # get lightning-specific commandline options
#parser = VAE.add_model_specific_args(parser) # get model-defined commandline options
parser = ImplicitAstro_Trans.add_model_specific_args(parser) # get model-defined commandline options
args = parser.parse_args()
yaml_file= args.yaml_file
if len(yaml_file)>0:
parse_yaml(args)
print(args)
numVal = 32*16 #size of mnist is 60k
#numVal = 32 # for test100
latent_dim = 1024
# ------------
# data
# ------------
# load up dataset of u, v vis and images
dataset = EHTIM_Dataset(dset_name = args.dataset,
data_path = args.dataset_path,
data_path_cont = args.data_path_cont,
data_path_imgs = args.data_path_imgs,
img_res = args.input_size,
pre_normalize = False,
)
split_train, split_val = random_split(dataset, [len(dataset)-numVal, numVal])
ngpu = torch.cuda.device_count()
#uv_pts_normalized, uv_pts_dense, vis, vis_dense, img = dataset[10]
train_loader = DataLoader(
split_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True, drop_last=True)
val_loader = DataLoader(
split_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
drop_last=True)
# ------------
# model
# ------------
mlp_hiddens = [args.mlp_hidden_dim for i in range(args.mlp_layers-1)]
implicitModel = ImplicitAstro_Trans(args,
learning_rate=args.learning_rate,
L_embed=args.L_embed,
input_encoding=args.input_encoding,
sigma=args.sigma,
num_fourier_coeff=args.num_fourier,
batch_size=args.batch_size,
input_size=args.input_size,
latent_dim=latent_dim,
hidden_dims=mlp_hiddens,
model_checkpoint=args.model_checkpoint,
ngpu=ngpu)
if len(args.model_checkpoint)>0:
print(f'--- loading from {args.model_checkpoint}...')
implicitModel = implicitModel.load_from_checkpoint(args.model_checkpoint)
implicitModel.ngpu= ngpu
#checkpoint_callback = ModelCheckpoint(monitor='train/total_loss')
#trainer = Trainer(callbacks=[checkpoint_callback])
trainer = pl.Trainer.from_argparse_args(args,
gpus=-1,
plugins=DDPPlugin(find_unused_parameters=False),
replace_sampler_ddp=True,
accelerator='ddp',
progress_bar_refresh_rate=20,
max_epochs=args.m_epochs,
val_check_interval=0.25,
)
# ------------
# training
# ------------
if not args.eval:
print('==Training==')
# wandb_logger = WandbLogger(name=args.experiment_name, project='implicit_astro', log_model='all')
trainer.fit(implicitModel, train_loader, val_loader)
print(implicitModel)
else:
print('==Testing==')
# implicitModel.load_from_checkpoint(args.ckpt_path)
trainer.test(implicitModel, val_loader, )
print(implicitModel)
if __name__ == '__main__':
cli_main()