-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
150 lines (129 loc) · 5.73 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torchaudio
import torch
import torch.nn as nn
import numpy as np
import math
import torch.nn.functional as F
import pickle as pkl
from collections import namedtuple
class Bottleneck_Res(nn.Module):
def __init__(self, in_channel, depth, stride):
super(Bottleneck_Res, self).__init__()
if in_channel == depth:
self.shortcut_layer = nn.MaxPool1d(1, stride)
else:
self.shortcut_layer = nn.Sequential(
nn.Conv1d(in_channel, depth, 1, stride, bias=False),
nn.BatchNorm1d(depth))
self.res_layer = nn.Sequential(
nn.Conv1d(in_channel, depth, 3, 1, 1, bias=False),
nn.BatchNorm1d(depth),
nn.PReLU(depth),
nn.Conv1d(depth, depth, 3, stride, 1, bias=False),
nn.BatchNorm1d(depth),
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
'''A named tuple describing a ResNet block.'''
def get_conv1d_block(in_channel, depth, num_units, stride = 2):
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units-1)]
def get_conv1d_blocks(num_layers):
if num_layers == 10:
blocks = [
get_conv1d_block(in_channel=256, depth=512, num_units = 2),
get_conv1d_block(in_channel=512, depth=512, num_units = 2)
]
elif num_layers == 18:
blocks = [
get_conv1d_block(in_channel=256, depth=256, stride = 1, num_units = 2),
get_conv1d_block(in_channel=256, depth=256, stride = 1, num_units = 2),
get_conv1d_block(in_channel=256, depth=256, stride = 1, num_units = 2),
get_conv1d_block(in_channel=256, depth=256, stride = 1, num_units = 2)
]
return blocks
class CNNBackbone(nn.Module):
def __init__(self, num_layers):
super(CNNBackbone, self).__init__()
blocks = get_conv1d_blocks(num_layers)
unit_module = Bottleneck_Res
modules = []
for block in blocks:
for bottleneck in block:
modules.append(
unit_module(
bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride,
)
)
self.body = nn.Sequential(*modules)
# initialization
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm1d)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.body(x)
return x
class Audio2FaceModel(nn.Module):
def __init__(self, audio_bundle, template_size, gumbel_softmax = False):
super(Audio2FaceModel, self).__init__()
feat_dim = 256
self.audio_model = audio_bundle.get_model()
self.template_layer = nn.Linear(template_size, feat_dim, bias = False)
self.audio_linear_layer = nn.Sequential(
nn.Conv1d(1024, feat_dim, 1),
nn.BatchNorm1d(feat_dim)
)
self.exp_layer = CNNBackbone(num_layers = 10)
self.exp_sigma_mu_layer = nn.Linear(512 * 3, 512)
self.fusion_layer = CNNBackbone(num_layers = 18)
self.gumbel_softmax = gumbel_softmax
def freeze_pretrain(self):
for param in self.audio_model.parameters():
param.requires_grad = False
def unfreeeze_pretain(self):
for param in self.audio_model.parameters():
param.requires_grad = True
def regularizer(self):
# sparsity regularization
weight = self.template_layer.weight
weight_l1_norm = torch.sum(torch.abs(weight))
return weight_l1_norm
def forward(self, audio, template, exp, target_len):
"""
:param audio: B * T
:param template: B * n_vertices * 3
:param exp: B * T * n_vertices * 3
:return: pred_geom: B * T * n_vertices * 3
"""
n_vertices = template.shape[1]
audio_feat, _ = self.audio_model.extract_features(audio) # audio feat has shape of B * T * 1024
audio_feat = torch.permute(audio_feat[-1], (0, 2, 1))
audio_feat = self.audio_linear_layer(audio_feat)
audio_feat = F.interpolate(audio_feat, target_len, mode = 'linear')
template = template.view(template.shape[0], -1)
template_feat = self.template_layer(template).unsqueeze(2).repeat(1, 1, target_len)
exp = exp.view(exp.shape[0], exp.shape[1], -1)
exp = exp - template.unsqueeze(1)
exp_feat = self.template_layer(exp)
exp_feat = torch.permute(exp_feat, (0, 2, 1))
exp_feat = self.exp_layer(exp_feat)
exp_feat_mean = torch.mean(exp_feat, dim = 2)
exp_feat_std = torch.std(exp_feat, dim = 2)
exp_feat_diff_std = torch.std(exp_feat[:, :, 1:] - exp_feat[:, :, :-1], dim = 2)
exp_feat = torch.cat((exp_feat_mean, exp_feat_std, exp_feat_diff_std), dim = 1)
exp_sigma_mu = self.exp_sigma_mu_layer(exp_feat)
exp_sigma, exp_mu = exp_sigma_mu[:, 0: 256].unsqueeze(2), exp_sigma_mu[:, 256:].unsqueeze(2)
sum_feat = audio_feat * exp_sigma + exp_mu + template_feat
sum_feat = self.fusion_layer(sum_feat)
sum_feat = torch.permute(sum_feat, (0, 2, 1))
pred_geom = F.linear(sum_feat, self.template_layer.weight.t())
pred_geom = pred_geom.view(pred_geom.shape[0], pred_geom.shape[1], n_vertices, 3)
pred_geom = template.view(-1, n_vertices, 3).unsqueeze(1) + pred_geom * 0.1
return pred_geom