-
Notifications
You must be signed in to change notification settings - Fork 23
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
benchmark #4
Comments
要提高速度最重要的是减少跨语言的交互次数。比如 另种方法是退回成一维,但用groupby来解决二维问题。这样必然导致速度变慢,5000支股票要 在选用
所以最终是直接调用了 |
感谢您的回复,方便的话,咱们能加个v联系吗:kaiwnd111 |
对多资产计算时序时,一般要group_by,但有可能速度很慢,但如果提前sort下就会好很多 df = df.sort('asset') |
我也并没有多资产,我只是单纯测试一维数组,对rolling算子的表现。(单纯看最底层算子的性能对比) 代码如下 np.random.seed(0) df = pl.DataFrame({ result = df.with_columns( result = bn.move_max(data1, n_time) 这个结果polars比bn要慢五倍。。。 |
polars只解决了并行计算问题,但每个函数内部的算法并没有做优化,这可能是因为人手不足 |
Is there any benchmark between single function(time-wise func and axis-wise func) from other python library and your polars implementation?
想问下有相关性能测试吗?我试了下,和bottleneck的move_xxx的性能差比好像有点大?不知道是不是我测试的方式不对。如果方便的话,可以加一下截面和时序算子的单一性能测试对比?感谢
The text was updated successfully, but these errors were encountered: