-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathripple_machine.py
316 lines (283 loc) · 17.2 KB
/
ripple_machine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import torch
import collections
import find_influential_nodes
device = torch.device('cuda')
EdgeSet = collections.namedtuple('EdgeSet', ['name', 'features', 'senders',
'receivers'])
MultiGraph = collections.namedtuple('Graph', ['node_features', 'edge_sets'])
MultiGraphWithPos = collections.namedtuple('Graph', ['node_features', 'edge_sets', 'target_feature', 'model_type', 'node_dynamic'])
# aggregate nodes into ripples
# returns node index in each ripple
class RippleGenerator():
def __init__(self, ripple_generation, ripple_generation_number):
self._ripple_generation_method = ripple_generation
self._ripple_generation_number = ripple_generation_number
def generate_ripple(self, graph):
ripple_indices = []
is_gradient = False
if self._ripple_generation_method == 'equal_size':
ripple_number = self._ripple_generation_number
target_feature_matrix = graph.target_feature
num_nodes = target_feature_matrix.shape[0]
ripple_size = num_nodes // ripple_number
ripple_size_rest = num_nodes % ripple_number
assert ripple_size > 0
for i in range(ripple_number - 1):
start_index = i * ripple_size
end_index = (i + 1) * ripple_size
ripple_indices.append((start_index, end_index))
ripple_indices.append(((ripple_number - 1) * ripple_size, ripple_number * ripple_size + ripple_size_rest))
return (ripple_indices, None, is_gradient)
elif self._ripple_generation_method == 'gradient':
# bins should be set as small as possible to ensure the nodes inside a bin has the greatest similarity and
# as big as possible to ensure the similar nodes are assign to same group
is_gradient = True
target_feature_matrix = graph.node_dynamic
num_nodes = target_feature_matrix.shape[0]
bins = 100
take_n_bins = self._ripple_generation_number - 1
# velocity_matrix = graph.node_features[:, 0:3]
# norm = torch.linalg.vector_norm(velocity_matrix, dim=1)
histogram = torch.histc(target_feature_matrix, bins=bins)
values, indices = torch.topk(histogram, take_n_bins)
for i in range(take_n_bins):
start_index = torch.sum(histogram[:indices[i]]).to(torch.int32)
end_index = start_index + values[i]
ripple_indices.append((start_index.item(), end_index.to(torch.int32).item()))
ripple_indices.sort(key=lambda x: x[0])
selected_nodes_concat = []
for start_index, end_index in ripple_indices:
selected_nodes = list(range(start_index, end_index))
selected_nodes_concat.append(selected_nodes)
flattened_list = [item for sublist in selected_nodes_concat for item in sublist]
rest_nodes = list(range(0, num_nodes))
rest_nodes = list(set(rest_nodes) - set(flattened_list))
return (ripple_indices, rest_nodes, is_gradient)
elif self._ripple_generation_method == 'exponential_size':
is_gradient = False
base = self._ripple_generation_number
exponential = 1
target_feature_matrix = graph.target_feature
num_nodes = target_feature_matrix.shape[0]
start_index = 0
while True:
end_index = start_index + base ** exponential
if end_index >= num_nodes:
end_index = num_nodes
ripple_indices.append((start_index, end_index))
return (ripple_indices, None, is_gradient)
ripple_indices.append((start_index, end_index))
exponential += 1
start_index = end_index
# select node from ripple that will be connected with nodes from other ripples
# takes output of ripple generator as input, and output a list of list of indices which contains the selected nodes of each ripple
class RippleNodeSelector():
def __init__(self, ripple_node_selection, ripple_node_selection_random_top_n):
self._ripple_node_selection = ripple_node_selection
self._ripple_node_selection_random_top_n = ripple_node_selection_random_top_n
def select_nodes(self, ripple_tuple):
selected_nodes = []
ripple_list = ripple_tuple[0]
ripple_rest = ripple_tuple[1]
is_gradient = ripple_tuple[2]
if self._ripple_node_selection == 'random':
for ripple in ripple_list:
ripple_size = ripple[1] - ripple[0]
ripple_select_size = self._ripple_node_selection_random_top_n if self._ripple_node_selection_random_top_n <= ripple_size else ripple_size
random_select_mask = torch.randperm(n=ripple_size)[0:ripple_select_size]
selected_nodes.append(random_select_mask)
if is_gradient:
ripple_size = len(ripple_rest)
ripple_select_size = self._ripple_node_selection_random_top_n if self._ripple_node_selection_random_top_n <= ripple_size else ripple_size
random_select_mask = torch.randperm(n=ripple_size)[0:ripple_select_size]
selected_nodes.append(random_select_mask)
elif self._ripple_node_selection == 'top':
for ripple in ripple_list:
ripple_size = ripple[1] - ripple[0]
ripple_select_size = self._ripple_node_selection_random_top_n if self._ripple_node_selection_random_top_n <= ripple_size else ripple_size
selected_nodes.append(range(ripple_size)[:ripple_select_size])
if is_gradient:
ripple_size = len(ripple_rest)
ripple_select_size = self._ripple_node_selection_random_top_n if self._ripple_node_selection_random_top_n <= ripple_size else ripple_size
selected_nodes.append(range(ripple_size)[:ripple_select_size])
elif self._ripple_node_selection == 'all':
for ripple in ripple_list:
ripple_size = ripple[1] - ripple[0]
selected_nodes.append(range(ripple_size))
if is_gradient:
ripple_size = len(ripple_rest)
selected_nodes.append(range(ripple_size))
return selected_nodes
# connect the selected nodes
class RippleNodeConnector():
def __init__(self, ripple_node_connection, ripple_node_ncross):
self._ripple_node_connection = ripple_node_connection
self._ripple_node_ncross = ripple_node_ncross
def connect(self, graph, ripple_tuple, node_selections, world_edge_normalizer, is_training):
model_type = graph.model_type
node_dynamic = graph.node_dynamic
_, sort_indices = torch.sort(node_dynamic, dim=0, descending=True)
selected_nodes = []
ripples = ripple_tuple[0]
ripple_rest = ripple_tuple[1]
for (start_index, end_index), node_mask in zip(ripples, node_selections):
if end_index > start_index:
ripple = sort_indices[start_index:end_index]
selected_nodes.append(ripple[node_mask])
if ripple_rest is not None:
ripple = sort_indices[list(ripple_rest)]
selected_nodes.append(ripple[node_selections[-1]])
ripple_edges = []
if self._ripple_node_connection == 'most_influential':
target_feature = graph.target_feature
receivers_list = [index for sub_selected_nodes in selected_nodes for index in sub_selected_nodes]
receivers_list.pop(0)
senders_list = []
senders_list.extend([sort_indices[0]] * len(receivers_list))
senders = torch.cat(
(torch.tensor(senders_list, device=device), torch.tensor(receivers_list, device=device)), dim=0)
receivers = torch.cat(
(torch.tensor(receivers_list, device=device), torch.tensor(senders_list, device=device)), dim=0)
if model_type == 'cloth_model' or model_type == 'deform_model':
relative_target_feature = (torch.index_select(input=target_feature, dim=0, index=senders) -
torch.index_select(input=target_feature, dim=0, index=receivers))
edge_features = torch.cat((relative_target_feature, torch.norm(relative_target_feature, dim=-1, keepdim=True)), dim=-1)
else:
raise Exception("Model type is not specified in RippleNodeConnector.")
edge_features = world_edge_normalizer(edge_features)
world_edges = EdgeSet(
name='ripple_edges',
features=world_edge_normalizer(edge_features, None, is_training),
receivers=receivers,
senders=senders)
ripple_edges.append(world_edges)
elif self._ripple_node_connection == 'fully_connected':
target_feature = graph.target_feature
for ripple_selected_nodes in selected_nodes:
receivers_list = ripple_selected_nodes
senders_list = ripple_selected_nodes
senders = torch.cat(
(torch.tensor(senders_list, device=device), torch.tensor(receivers_list, device=device)), dim=0)
receivers = torch.cat(
(torch.tensor(receivers_list, device=device), torch.tensor(senders_list, device=device)), dim=0)
if model_type == 'cloth_model' or model_type == 'deform_model':
relative_target_feature = (torch.index_select(input=target_feature, dim=0, index=senders) -
torch.index_select(input=target_feature, dim=0, index=receivers))
edge_features = torch.cat(
(relative_target_feature, torch.norm(relative_target_feature, dim=-1, keepdim=True)), dim=-1)
else:
raise Exception("Model type is not specified in RippleNodeConnector.")
edge_features = world_edge_normalizer(edge_features)
world_edges = EdgeSet(
name='ripple_edges',
features=world_edge_normalizer(edge_features, None, is_training),
receivers=receivers,
senders=senders)
ripple_edges.append(world_edges)
elif self._ripple_node_connection == 'fully_ncross_connected':
target_feature = graph.target_feature
cross_nodes = []
for ripple_selected_nodes in selected_nodes:
if len(ripple_selected_nodes) == 0:
world_edges = EdgeSet(
name='ripple_edges',
features=[],
receivers=[],
senders=[])
ripple_edges.append(world_edges)
mask = torch.randperm(n=len(ripple_selected_nodes))[:self._ripple_node_ncross]
for index in ripple_selected_nodes[mask]:
cross_nodes.append(index)
receivers_list = ripple_selected_nodes
senders_list = ripple_selected_nodes
senders = torch.cat(
(torch.tensor(senders_list, device=device), torch.tensor(receivers_list, device=device)), dim=0)
receivers = torch.cat(
(torch.tensor(receivers_list, device=device), torch.tensor(senders_list, device=device)), dim=0)
if model_type == 'cloth_model' or model_type == 'deform_model':
relative_target_feature = (torch.index_select(input=target_feature, dim=0, index=senders) -
torch.index_select(input=target_feature, dim=0, index=receivers))
edge_features = torch.cat(
(relative_target_feature, torch.norm(relative_target_feature, dim=-1, keepdim=True)), dim=-1)
else:
raise Exception("Model type is not specified in RippleNodeConnector.")
edge_features = world_edge_normalizer(edge_features)
world_edges = EdgeSet(
name='ripple_edges',
features=world_edge_normalizer(edge_features, None, is_training),
receivers=receivers,
senders=senders)
ripple_edges.append(world_edges)
# fully connect cross nodes
receivers_list = cross_nodes
senders_list = cross_nodes
senders = torch.cat(
(torch.tensor(senders_list, device=device, dtype=torch.int32), torch.tensor(receivers_list, device=device, dtype=torch.int32)), dim=0)
receivers = torch.cat(
(torch.tensor(receivers_list, device=device), torch.tensor(senders_list, device=device)), dim=0)
if model_type == 'cloth_model' or model_type == 'deform_model':
relative_target_feature = (torch.index_select(input=target_feature, dim=0, index=senders) -
torch.index_select(input=target_feature, dim=0, index=receivers))
edge_features = torch.cat(
(relative_target_feature, torch.norm(relative_target_feature, dim=-1, keepdim=True)), dim=-1)
else:
raise Exception("Model type is not specified in RippleNodeConnector.")
edge_features = world_edge_normalizer(edge_features)
world_edges = EdgeSet(
name='ripple_edges',
features=world_edge_normalizer(edge_features, None, is_training),
receivers=receivers,
senders=senders)
ripple_edges.append(world_edges)
edge_sets = graph.edge_sets
edge_sets.extend(ripple_edges)
return MultiGraphWithPos(node_features=graph.node_features,
edge_sets=edge_sets, target_feature=graph.target_feature,
model_type=graph.model_type, node_dynamic=graph.node_dynamic)
# class that aggregates ripple generator, ripple node selector and ripple node connector
class RippleMachine():
def __init__(self, ripple_generation, ripple_generation_number, ripple_node_selection,
ripple_node_selection_random_top_n, ripple_node_connection, ripple_node_ncross):
self._ripple_generation = ripple_generation
self._ripple_generation_number = ripple_generation_number
self._radius = 0.01
self._topk = 10
if self._ripple_generation != 'random_nodes' and self._ripple_generation != 'distance_density':
self._ripple_generator = RippleGenerator(ripple_generation, ripple_generation_number)
self._ripple_node_selector = RippleNodeSelector(ripple_node_selection, ripple_node_selection_random_top_n)
self._ripple_node_connector = RippleNodeConnector(ripple_node_connection, ripple_node_ncross)
def add_meta_edges(self, graph, world_edge_normalizer, is_training):
if self._ripple_generation == 'random_nodes' or self._ripple_generation == 'distance_density':
target_feature = graph.target_feature
selected_nodes = None
if self._ripple_generation == 'random_nodes':
selected_nodes = torch.randperm(n=target_feature.shape[0])[0:self._ripple_generation_number]
if self._ripple_generation == 'distance_density':
selected_nodes = find_influential_nodes.find_influential_nodes(target_feature, self._radius, self._topk)
reverse_selected_nodes = torch.flip(selected_nodes, [-1])
edges = torch.cat((torch.combinations(selected_nodes, with_replacement=True), torch.combinations(reverse_selected_nodes, with_replacement=True)), dim=0)
senders, receivers = torch.unbind(edges, dim=-1)
model_type = graph.model_type
if model_type == 'cloth_model' or model_type == 'deform_model':
relative_world_pos = (torch.index_select(input=target_feature.to(device), dim=0, index=senders.to(device)) -
torch.index_select(input=target_feature.to(device), dim=0, index=receivers.to(device)))
world_edge_features = torch.cat((
relative_world_pos,
torch.norm(relative_world_pos, dim=-1, keepdim=True)), dim=-1)
else:
raise Exception("Model type is not specified in RippleNodeConnector.")
world_edges = EdgeSet(
name='ripple_edges',
features=world_edge_normalizer(world_edge_features, None, is_training),
receivers=receivers,
senders=senders)
edge_sets = graph.edge_sets
edge_sets.append(world_edges)
return MultiGraphWithPos(node_features=graph.node_features,
edge_sets=edge_sets, target_feature=graph.target_feature,
model_type=graph.model_type, node_dynamic=graph.node_dynamic)
else:
ripple_indices = self._ripple_generator.generate_ripple(graph)
selected_nodes = self._ripple_node_selector.select_nodes(ripple_indices)
new_graph = self._ripple_node_connector.connect(graph, ripple_indices, selected_nodes, world_edge_normalizer, is_training)
return new_graph