- large language model
- image/video generative model
- image classification(backbone)
- OCR
- object detection
model | supported by mindformers |
---|---|
llama2 | llama2_7b, llama2_13b, llama2_7b_lora, llama2_13b_lora, llama2_70b |
llama3 | llama3_8b |
glm2 | glm2_6b, glm2_6b_lora |
glm3 | glm3_6b, glm3_6b_lora |
gpt2 | gpt2, gpt2_13b |
baichuan2 | baichuan2_7b, baichuan2_13b, baichuan2_7b_lora, baichuan2_13b_lora |
qwen | qwen_7b, qwen_14b, qwen_7b_lora, qwen_14b_lora |
qwen1.5 | qwen1.5-14b, qwen1.5-72b |
codegeex2 | codegeex2_6b |
codellama | codellama_34b |
deepseek | deepseek-coder-33b-instruct |
internlm | internlm_7b, internlm_20b, internlm_7b_lora |
mixtral | mixtral-8x7b |
wizardcoder | wizardcoder_15b |
yi | yi_6b,yi_34b |
model | supported by mindone |
---|---|
stable diffusion | sd 1.5/2.0, vanilla fine tune, lora, dreambooth |
stable diffusion xl | sai style(stability AI) vanilla fine tune, lora, dreambooth |
dit | text to image fine tune |
latte | uncondition text to image fine tune |
hpcai open sora | v1.0/1.1/1.2 large scale training with dp/sp/zero |
pku open sora plan | v1.0/v1.1 large scale training with dp/sp/zero |
animatediff | motion module and lora training |
model | acc@1 | supported by mindcv |
---|---|---|
vgg11 | 71.86 | config |
vgg13 | 72.87 | config |
vgg16 | 74.61 | config |
vgg19 | 75.21 | config |
resnet18 | 70.21 | config |
resnet34 | 74.15 | config |
resnet50 | 76.69 | config |
resnet101 | 78.24 | config |
resnet152 | 78.72 | config |
resnetv2_50 | 76.90 | config |
resnetv2_101 | 78.48 | config |
dpn92 | 79.46 | config |
dpn98 | 79.94 | config |
dpn107 | 80.05 | config |
dpn131 | 80.07 | config |
densenet121 | 75.64 | config |
densenet161 | 79.09 | config |
densenet169 | 77.26 | config |
densenet201 | 78.14 | config |
seresnet18 | 71.81 | config |
seresnet34 | 75.36 | config |
seresnet50 | 78.31 | config |
seresnext26 | 77.18 | config |
seresnext50 | 78.71 | config |
skresnet18 | 73.09 | config |
skresnet34 | 76.71 | config |
skresnet50_32x4d | 79.08 | config |
resnext50_32x4d | 78.53 | config |
resnext101_32x4d | 79.83 | config |
resnext101_64x4d | 80.30 | config |
resnext152_64x4d | 80.52 | config |
rexnet_x09 | 77.07 | config |
rexnet_x10 | 77.38 | config |
rexnet_x13 | 79.06 | config |
rexnet_x15 | 79.94 | config |
rexnet_x20 | 80.64 | config |
resnest50 | 80.81 | config |
resnest101 | 82.50 | config |
res2net50 | 79.35 | config |
res2net101 | 79.56 | config |
res2net50_v1b | 80.32 | config |
res2net101_v1b | 95.41 | config |
googlenet | 72.68 | config |
inceptionv3 | 79.11 | config |
inceptionv4 | 80.88 | config |
mobilenet_v1_025 | 53.87 | config |
mobilenet_v1_050 | 65.94 | config |
mobilenet_v1_075 | 70.44 | config |
mobilenet_v1_100 | 72.95 | config |
mobilenet_v2_075 | 69.98 | config |
mobilenet_v2_100 | 72.27 | config |
mobilenet_v2_140 | 75.56 | config |
mobilenet_v3_small | 68.10 | config |
mobilenet_v3_large | 75.23 | config |
shufflenet_v1_g3_x0_5 | 57.05 | config |
shufflenet_v1_g3_x1_5 | 67.77 | config |
shufflenet_v2_x0_5 | 57.05 | config |
shufflenet_v2_x1_0 | 67.77 | config |
shufflenet_v2_x1_5 | 57.05 | config |
shufflenet_v2_x2_0 | 67.77 | config |
xception | 79.01 | config |
ghostnet_50 | 66.03 | config |
ghostnet_100 | 73.78 | config |
ghostnet_130 | 75.50 | config |
nasnet_a_4x1056 | 73.65 | config |
mnasnet_0.5 | 68.07 | config |
mnasnet_0.75 | 71.81 | config |
mnasnet_1.0 | 74.28 | config |
mnasnet_1.4 | 76.01 | config |
efficientnet_b0 | 76.89 | config |
efficientnet_b1 | 78.95 | config |
regnet_x_200mf | 68.74 | config |
regnet_x_400mf | 73.16 | config |
regnet_x_600mf | 73.34 | config |
regnet_x_800mf | 76.04 | config |
regnet_y_200mf | 70.30 | config |
regnet_y_400mf | 73.91 | config |
regnet_y_600mf | 75.69 | config |
regnet_y_800mf | 76.52 | config |
mixnet_s | 75.52 | config |
mixnet_m | 76.64 | config |
mixnet_l | 78.73 | config |
hrnet_w32 | 80.64 | config |
hrnet_w48 | 81.19 | config |
bit_resnet50 | 76.81 | config |
bit_resnet50x3 | 80.63 | config |
bit_resnet101 | 77.93 | config |
repvgg_a0 | 72.19 | config |
repvgg_a1 | 74.19 | config |
repvgg_a2 | 76.63 | config |
repvgg_b0 | 74.99 | config |
repvgg_b1 | 78.81 | config |
repvgg_b2 | 79.29 | config |
repvgg_b3 | 80.46 | config |
repvgg_b1g2 | 78.03 | config |
repvgg_b1g4 | 77.64 | config |
repvgg_b2g4 | 78.80 | config |
repmlp_t224 | 76.71 | config |
convnext_tiny | 81.91 | config |
convnext_small | 83.40 | config |
convnext_base | 83.32 | config |
vit_b_32_224 | 75.86 | config |
vit_l_16_224 | 76.34 | config |
vit_l_32_224 | 73.71 | config |
swintransformer_tiny | 80.82 | config |
pvt_tiny | 74.81 | config |
pvt_small | 79.66 | config |
pvt_medium | 81.82 | config |
pvt_large | 81.75 | config |
pvt_v2_b0 | 71.50 | config |
pvt_v2_b1 | 78.91 | config |
pvt_v2_b2 | 81.99 | config |
pvt_v2_b3 | 82.84 | config |
pvt_v2_b4 | 83.14 | config |
pit_ti | 72.96 | config |
pit_xs | 78.41 | config |
pit_s | 80.56 | config |
pit_b | 81.87 | config |
coat_lite_tiny | 77.35 | config |
coat_lite_mini | 78.51 | config |
coat_tiny | 79.67 | config |
convit_tiny | 73.66 | config |
convit_tiny_plus | 77.00 | config |
convit_small | 81.63 | config |
convit_small_plus | 81.80 | config |
convit_base | 82.10 | config |
convit_base_plus | 81.96 | config |
crossvit_9 | 73.56 | config |
crossvit_15 | 81.08 | config |
crossvit_18 | 81.93 | config |
mobilevit_xx_small | 68.90 | config |
mobilevit_x_small | 74.98 | config |
mobilevit_small | 78.48 | config |
visformer_tiny | 78.28 | config |
visformer_tiny_v2 | 78.82 | config |
visformer_small | 81.76 | config |
visformer_small_v2 | 82.17 | config |
edgenext_xx_small | 71.02 | config |
edgenext_x_small | 75.14 | config |
edgenext_small | 79.15 | config |
edgenext_base | 82.24 | config |
poolformer_s12 | 77.33 | config |
xcit_tiny_12_p16 | 77.67 | config |
model | dataset | fscore | supported by mindocr |
---|---|---|---|
dbnet_mobilenetv3 | icdar2015 | 77.23 | config |
dbnet_resnet18 | icdar2015 | 81.73 | config |
dbnet_resnet50 | icdar2015 | 85.05 | config |
dbnet++_resnet50 | icdar2015 | 86.74 | config |
psenet_resnet152 | icdar2015 | 82.06 | config |
east_resnet50 | icdar2015 | 84.87 | config |
fcenet_resnet50 | icdar2015 | 84.12 | config |
model | dataset | acc | supported by mindocr |
---|---|---|---|
svtr_tiny | IC03,13,15,IIIT,etc | 89.02 | config |
crnn_vgg7 | IC03,13,15,IIIT,etc | 82.03 | config |
crnn_resnet34_vd | IC03,13,15,IIIT,etc | 84.45 | config |
rare_resnet34_vd | IC03,13,15,IIIT,etc | 85.19 | config |
model | dataset | acc | supported by mindocr |
---|---|---|---|
mobilenetv3 | RCTW17,MTWI,LSVT | 94.59 | config |
model | map | supported by mindyolo |
---|---|---|
yolov8_n | 37.2 | config |
yolov8_s | 44.6 | config |
yolov8_m | 50.5 | config |
yolov8_l | 52.8 | config |
yolov8_x | 53.7 | config |
yolov7_t | 37.5 | config |
yolov7_l | 50.8 | config |
yolov7_x | 52.4 | config |
yolov5_n | 27.3 | config |
yolov5_s | 37.6 | config |
yolov5_m | 44.9 | config |
yolov5_l | 48.5 | config |
yolov5_x | 50.5 | config |
yolov4_csp | 45.4 | config |
yolov4_csp(silu) | 45.8 | config |
yolov3_darknet53 | 45.5 | config |
yolox_n | 24.1 | config |
yolox_t | 33.3 | config |
yolox_s | 40.7 | config |
yolox_m | 46.7 | config |
yolox_l | 49.2 | config |
yolox_x | 51.6 | config |
yolox_darknet53 | 47.7 | config |
model | supported by minddet |
---|---|
ssd_vgg16 | coming soon |
ssd_mobilenetv1 | coming soon |
ssd_mobilenetv2 | coming soon |
ssd_resnet50 | coming soon |
fasterrcnn | coming soon |
maskrcnn_mobilenetv1 | coming soon |
maskrcnn_resnet50 | coming soon |
ocrnet | link |
deeplab v3 | coming soon |
deeplab v3 plus | coming soon |
unet | coming soon |
unet3d | coming soon |
centernet | coming soon |
pointpillar | coming soon |
bevformer | coming soon |
bevdet | coming soon |
bevfusion | coming soon |
uniad | coming soon |
Mindspore only provides scripts that downloads and preprocesses public datasets. We do not own these datasets and are not responsible for their quality or maintenance. Please make sure you have permission to use the dataset under the dataset’s license. The models trained on these dataset are for non-commercial research and educational purpose only.
To dataset owners: we will remove or update all public content upon request if you don’t want your dataset included on Mindspore, or wish to update it in any way. Please contact us through a Github/Gitee issue. Your understanding and contribution to this community is greatly appreciated.
MindSpore is Apache 2.0 licensed. Please see the LICENSE file.