There are a number of formal APIs that tool implementors may interact with.
Other tools may interact with the formal AST as defined below. Any JSON structure matching this pattern may be used and passed into the compile
and precompile
methods in the same way as the text for a template.
AST structures may be generated either with the Handlebars.parse
method and then manipulated, via the Handlebars.AST
objects of the same name, or constructed manually as a generic JavaScript object matching the structure defined below.
var ast = Handlebars.parse(myTemplate);
// Modify ast
Handlebars.precompile(ast);
There are two primary APIs that are used to parse an existing template into the AST:
Handlebars.parseWithoutProcessing
is the primary mechanism to turn a raw template string into the Handlebars AST described in this document. No processing is done on the resulting AST which makes this ideal for codemod (for source to source transformation) tooling.
Example:
let ast = Handlebars.parseWithoutProcessing(myTemplate);
Handlebars.parse
will parse the template with parseWithoutProcessing
(see above) then it will update the AST to strip extraneous whitespace. The whitespace stripping functionality handles two distinct situations:
- Removes whitespace around dynamic statements that are on a line by themselves (aka "stand alone")
- Applies "whitespace control" characters (i.e.
~
) by truncating theContentStatement
value
property appropriately (e.g.\n\n{{~foo}}
would have aContentStatement
with avalue
of''
)
Handlebars.parse
is used internally by Handlebars.precompile
and Handlebars.compile
.
Example:
let ast = Handlebars.parse(myTemplate);
interface Node {
type: string;
loc: SourceLocation | null;
}
interface SourceLocation {
source: string | null;
start: Position;
end: Position;
}
interface Position {
line: uint >= 1;
column: uint >= 0;
}
interface Program <: Node {
type: "Program";
body: [ Statement ];
blockParams: [ string ];
}
interface Statement <: Node { }
interface MustacheStatement <: Statement {
type: "MustacheStatement";
path: PathExpression | Literal;
params: [ Expression ];
hash: Hash;
escaped: boolean;
strip: StripFlags | null;
}
interface BlockStatement <: Statement {
type: "BlockStatement";
path: PathExpression | Literal;
params: [ Expression ];
hash: Hash;
program: Program | null;
inverse: Program | null;
openStrip: StripFlags | null;
inverseStrip: StripFlags | null;
closeStrip: StripFlags | null;
}
interface PartialStatement <: Statement {
type: "PartialStatement";
name: PathExpression | SubExpression;
params: [ Expression ];
hash: Hash;
indent: string;
strip: StripFlags | null;
}
interface PartialBlockStatement <: Statement {
type: "PartialBlockStatement";
name: PathExpression | SubExpression;
params: [ Expression ];
hash: Hash;
program: Program | null;
indent: string;
openStrip: StripFlags | null;
closeStrip: StripFlags | null;
}
name
will be a SubExpression
when tied to a dynamic partial, i.e. {{> (foo) }}
, otherwise this is a path or literal whose original
value is used to lookup the desired partial.
interface ContentStatement <: Statement {
type: "ContentStatement";
value: string;
original: string;
}
interface CommentStatement <: Statement {
type: "CommentStatement";
value: string;
strip: StripFlags | null;
}
interface Decorator <: Statement {
type: "Decorator";
path: PathExpression | Literal;
params: [ Expression ];
hash: Hash;
strip: StripFlags | null;
}
interface DecoratorBlock <: Statement {
type: "DecoratorBlock";
path: PathExpression | Literal;
params: [ Expression ];
hash: Hash;
program: Program | null;
openStrip: StripFlags | null;
closeStrip: StripFlags | null;
}
Decorator paths only utilize the path.original
value and as a consequence do not support depthed evaluation.
interface Expression <: Node { }
interface SubExpression <: Expression {
type: "SubExpression";
path: PathExpression;
params: [ Expression ];
hash: Hash;
}
interface PathExpression <: Expression {
type: "PathExpression";
data: boolean;
depth: uint >= 0;
parts: [ string ];
original: string;
}
data
is true when the given expression is a@data
reference.depth
is an integer representation of which context the expression references.0
represents the current context,1
would be../
, etc.parts
is an array of the names in the path.foo.bar
would be['foo', 'bar']
. Scope references,.
,..
, andthis
should be omitted from this array.original
is the path as entered by the user. Separator and scope references are left untouched.
interface Literal <: Expression { }
interface StringLiteral <: Literal {
type: "StringLiteral";
value: string;
original: string;
}
interface BooleanLiteral <: Literal {
type: "BooleanLiteral";
value: boolean;
original: boolean;
}
interface NumberLiteral <: Literal {
type: "NumberLiteral";
value: number;
original: number;
}
interface UndefinedLiteral <: Literal {
type: "UndefinedLiteral";
}
interface NullLiteral <: Literal {
type: "NullLiteral";
}
interface Hash <: Node {
type: "Hash";
pairs: [ HashPair ];
}
interface HashPair <: Node {
type: "HashPair";
key: string;
value: Expression;
}
interface StripFlags {
open: boolean;
close: boolean;
}
StripFlags
are used to signify whitespace control character that may have been entered on a given statement.
Handlebars.Visitor
is available as a base class for general interaction with AST structures. This will by default traverse the entire tree and individual methods may be overridden to provide specific responses to particular nodes.
Recording all referenced partial names:
var Visitor = Handlebars.Visitor;
function ImportScanner() {
this.partials = [];
}
ImportScanner.prototype = new Visitor();
ImportScanner.prototype.PartialStatement = function (partial) {
this.partials.push({ request: partial.name.original });
Visitor.prototype.PartialStatement.call(this, partial);
};
var scanner = new ImportScanner();
scanner.accept(ast);
The current node's ancestors will be maintained in the parents
array, with the most recent parent listed first.
The visitor may also be configured to operate in mutation mode by setting the mutating
field to true. When in this mode, handler methods may return any valid AST node and it will replace the one they are currently operating on. Returning false
will remove the given value (if valid) and returning undefined
will leave the node intact. This return structure only apply to mutation mode and non-mutation mode visitors are free to return whatever values they wish.
Implementors that may need to support mutation mode are encouraged to utilize the acceptKey
, acceptRequired
and acceptArray
helpers which provide the conditional overwrite behavior as well as implement sanity checks where pertinent.
The Handlebars.JavaScriptCompiler
object has a number of methods that may be customized to alter the output of the compiler:
-
nameLookup(parent, name, type)
Used to generate the code to resolve a given path component.parent
is the existing code in the path resolutionname
is the current path componenttype
is the type of name being evaluated. May be one ofcontext
,data
,helper
,decorator
, orpartial
.
Note that this does not impact dynamic partials, which implementors need to be aware of. Overriding
VM.resolvePartial
may be required to support dynamic cases. -
depthedLookup(name)
Used to generate code that resolves parameters within any context in the stack. Is only used incompat
mode. -
compilerInfo()
Allows for custom compiler flags used in the runtime version checking logic. -
appendToBuffer(source, location, explicit)
Allows for code buffer emitting code. Defaults behavior is string concatenation.source
is the source code whose result is to be appendinglocation
is the location of the source in the source map.explicit
is a flag signaling that the emit operation must occur, vs. the lazy evaled options otherwise.
-
initializeBuffer()
Allows for buffers other than the default string buffer to be used. Generally needs to be paired with a customappendToBuffer
implementation.
This example changes all lookups of properties are performed by a helper (lookupLowerCase
) which looks for test
if {{Test}}
occurs in the template. This is just to illustrate how compiler behavior can be change.
There is also a jsfiddle with this code if you want to play around with it.
function MyCompiler() {
Handlebars.JavaScriptCompiler.apply(this, arguments);
}
MyCompiler.prototype = new Handlebars.JavaScriptCompiler();
// Use this compile to compile BlockStatment-Blocks
MyCompiler.prototype.compiler = MyCompiler;
MyCompiler.prototype.nameLookup = function (parent, name, type) {
if (type === 'context') {
return this.source.functionCall('helpers.lookupLowerCase', '', [
parent,
JSON.stringify(name),
]);
} else {
return Handlebars.JavaScriptCompiler.prototype.nameLookup.call(
this,
parent,
name,
type
);
}
};
var env = Handlebars.create();
env.registerHelper('lookupLowerCase', function (parent, name) {
return parent[name.toLowerCase()];
});
env.JavaScriptCompiler = MyCompiler;
var template = env.compile('{{#each Test}} ({{Value}}) {{/each}}');
console.log(
template({
test: [{ value: 'a' }, { value: 'b' }, { value: 'c' }],
})
);