Skip to content

Latest commit

 

History

History
70 lines (62 loc) · 1.11 KB

File metadata and controls

70 lines (62 loc) · 1.11 KB

MatchPyramid-for-semantic-matching

A simple Keras implementation of MatchPyramid model for semantic matching.
Please refer paper:Text Matching as Image Recognition

Quick Glance

  1. Input Data Format
  • Train/Valid set:
label	|q1	|q2
1	|Q2119	|D18821
0	|Q2119	|D18822
  • Test set:
q1	|q2
Q2241	|D19682
Q2241	|D19684
  • Preprocessed Corpus:
qid	|words
D9980	|47 0 1 2 3 4 5 6 7 8 9 10
D5796	|21 40 41 42 43 44 14 45
  • Word Embedding:
word	|embedding (50-dimension)
28137	|-0.54645991 2.28509140 ... -0.34052843 -2.01874685
8417	|-9.01635551 -3.80108356 ... 1.86873138 2.14706421
  • Word Dictionary:
word	|wid
preparing	|0
to	|1
rebuild	|2
  1. Train the model
$ python match_pyramid.py
  1. Loss and Accuracy
Best Valid loss Best Valid accuracy
WikiQA 0.3973 0.8786
QouraQP 0.4525 0.7797

Requirements

  • Python 3.5
  • TensorFlow 1.8.0
  • Keras 2.1.6