-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathexp_office.py
226 lines (194 loc) · 8.74 KB
/
exp_office.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 12 10:36:58 2016
@author: zellinger
"""
from __future__ import print_function
import os
import numpy as np
from models.office_mmatch import NN
from models.domain_regularizer import DomainRegularizer
from utils.office_utils import plot_activations
from keras.preprocessing.image import ImageDataGenerator
EXP_FOLDER = 'experiments/office/'
DATASET_FOLDER = 'utils/office_dataset/'
VGG16_WEIGHTS = 'vgg16_weights.h5'
N_IMAGES_AM = 2817
N_IMAGES_DSLR = 498
N_IMAGES_WC = 795
S_IMAGE = 288
S_BATCH = 2
N_REPETITIONS = 10
if __name__ == '__main__':
""" main """
# create folder for model parameters
if not os.path.exists(EXP_FOLDER):
print("\nCreating folder "+EXP_FOLDER+"...")
os.makedirs(EXP_FOLDER)
print("\nLoading office image data...")
datagen = ImageDataGenerator()
am_gen = datagen.flow_from_directory(DATASET_FOLDER+'amazon/images',
target_size=(S_IMAGE, S_IMAGE),
batch_size=S_BATCH)
dslr_gen = datagen.flow_from_directory(DATASET_FOLDER+'dslr/images',
target_size=(S_IMAGE, S_IMAGE),
batch_size=S_BATCH)
wc_gen = datagen.flow_from_directory(DATASET_FOLDER+'webcam/images',
target_size=(S_IMAGE, S_IMAGE),
batch_size=S_BATCH)
print("\nCreating/Loading image representations via VGG_16 model...")
nn = NN(EXP_FOLDER)
x_am, y_am = nn.create_img_repr(DATASET_FOLDER+VGG16_WEIGHTS, am_gen,
'amazon', N_IMAGES_AM)
x_wc, y_wc = nn.create_img_repr(DATASET_FOLDER+VGG16_WEIGHTS, wc_gen,
'webcam', N_IMAGES_WC)
x_dslr, y_dslr = nn.create_img_repr(DATASET_FOLDER+VGG16_WEIGHTS, dslr_gen,
'dslr', N_IMAGES_DSLR)
print("\nRandom Repetitions...")
reg = DomainRegularizer(l=1.0, name='mmatch')
print("wc->dslr:")
acc_wcdslr = np.array([])
acc_wcdslr_dr = np.array([])
for i in range(N_REPETITIONS):
np.random.seed(i)
print('--')
nn_wc = NN(EXP_FOLDER, n_features=256)
nn_wc_dr = NN(EXP_FOLDER, n_features=256, domain_regularizer=reg)
nn_wc.fit(x_wc, y_wc, x_dslr)
nn_wc_dr.fit(x_wc, y_wc, x_dslr)
acc_tst = nn_wc.evaluate(x_dslr, y_dslr)
acc_tst_dr = nn_wc_dr.evaluate(x_dslr, y_dslr)
acc_wcdslr = np.append(acc_wcdslr,acc_tst)
acc_wcdslr_dr = np.append(acc_wcdslr_dr,acc_tst_dr)
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst= '+str(acc_tst))
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst-dr= '+str(acc_tst_dr))
print("\ndslr->wc:")
acc_dslrwc = np.array([])
acc_dslrwc_dr = np.array([])
for i in range(N_REPETITIONS):
np.random.seed(i)
print('--')
nn_dslr = NN(EXP_FOLDER, n_features=256)
nn_dslr_dr = NN(EXP_FOLDER, n_features=256, domain_regularizer=reg)
nn_dslr.fit(x_dslr, y_dslr, x_wc)
nn_dslr_dr.fit(x_dslr, y_dslr, x_wc)
acc_tst = nn_dslr.evaluate(x_wc, y_wc)
acc_tst_dr = nn_dslr_dr.evaluate(x_wc, y_wc)
acc_dslrwc = np.append(acc_dslrwc, acc_tst)
acc_dslrwc_dr = np.append(acc_dslrwc_dr, acc_tst_dr)
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst= '+str(acc_tst))
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst-dr= '+str(acc_tst_dr))
print("\nam->wc:")
acc_amwc = np.array([])
acc_amwc_dr = np.array([])
for i in range(N_REPETITIONS):
np.random.seed(i)
print('--')
nn_am = NN(EXP_FOLDER, n_features=256)
nn_am_dr = NN(EXP_FOLDER, n_features=256, domain_regularizer=reg)
nn_am.fit(x_am, y_am, x_wc)
nn_am_dr.fit(x_am, y_am, x_wc)
acc_tst = nn_am.evaluate(x_wc, y_wc)
acc_tst_dr = nn_am_dr.evaluate(x_wc, y_wc)
acc_amwc = np.append(acc_amwc, acc_tst)
acc_amwc_dr = np.append(acc_amwc_dr, acc_tst_dr)
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst= '+str(acc_tst))
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst-dr= '+str(acc_tst_dr))
print("am->dslr:")
acc_amdslr = np.array([])
acc_amdslr_dr = np.array([])
for i in range(N_REPETITIONS):
np.random.seed(i)
print('--')
nn_amdslr = NN(EXP_FOLDER, n_features=256)
nn_amdslr_dr = NN(EXP_FOLDER, n_features=256, domain_regularizer=reg)
nn_amdslr.fit(x_am, y_am, x_dslr)
nn_amdslr_dr.fit(x_am, y_am, x_dslr)
acc_tst = nn_amdslr.evaluate(x_dslr, y_dslr)
acc_tst_dr = nn_amdslr_dr.evaluate(x_dslr, y_dslr)
acc_amdslr = np.append(acc_amdslr,acc_tst)
acc_amdslr_dr = np.append(acc_amdslr_dr,acc_tst_dr)
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst= '+str(acc_tst))
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst-dr= '+str(acc_tst_dr))
print("dslr->am:")
acc_dslram = np.array([])
acc_dslram_dr = np.array([])
for i in range(N_REPETITIONS):
np.random.seed(i)
print('--')
nn_dslram = NN(EXP_FOLDER, n_features=256)
nn_dslram_dr = NN(EXP_FOLDER, n_features=256, domain_regularizer=reg)
nn_dslram.fit(x_dslr, y_dslr, x_am)
nn_dslram_dr.fit(x_dslr, y_dslr, x_am)
acc_tst = nn_dslram.evaluate(x_am, y_am)
acc_tst_dr = nn_dslram_dr.evaluate(x_am, y_am)
acc_dslram = np.append(acc_dslram,acc_tst)
acc_dslram_dr = np.append(acc_dslram_dr,acc_tst_dr)
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst= '+str(acc_tst))
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst-dr= '+str(acc_tst_dr))
print("wc->am:")
acc_wcam = np.array([])
acc_wcam_dr = np.array([])
for i in range(N_REPETITIONS):
np.random.seed(i)
print('--')
nn_wcam = NN(EXP_FOLDER, n_features=256)
nn_wcam_dr = NN(EXP_FOLDER, n_features=256, domain_regularizer=reg)
nn_wcam.fit(x_wc, y_wc, x_am)
nn_wcam_dr.fit(x_wc, y_wc, x_am)
acc_tst = nn_wcam.evaluate(x_am, y_am)
acc_tst_dr = nn_wcam_dr.evaluate(x_am, y_am)
acc_wcam = np.append(acc_wcam,acc_tst)
acc_wcam_dr = np.append(acc_wcam_dr,acc_tst_dr)
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst= '+str(acc_tst))
print(str(i+1)+'/'+str(N_REPETITIONS)+' acc-tst-dr= '+str(acc_tst_dr))
print('------------------------------------------------------------------')
print("am->wc")
print('SimpleNN acc-tst= '+str(acc_amwc.mean())+'+-'
+str(acc_amwc.std()))
print('MMatchNN acc-tst= '+str(acc_amwc_dr.mean())+'+-'
+str(acc_amwc_dr.std()))
print("dslr->wc")
print('SimpleNN acc-tst= '+str(acc_dslrwc.mean())+'+-'
+str(acc_dslrwc.std()))
print('MMatchNN acc-tst= '+str(acc_dslrwc_dr.mean())+'+-'
+str(acc_dslrwc_dr.std()))
print("wc->dslr")
print('SimpleNN acc-tst= '+str(acc_wcdslr.mean())+'+-'
+str(acc_wcdslr.std()))
print('MMatchNN acc-tst= '+str(acc_wcdslr_dr.mean())+'+-'
+str(acc_wcdslr_dr.std()))
print("am->dslr")
print('SimpleNN acc-tst= '+str(acc_amdslr.mean())+'+-'
+str(acc_amdslr.std()))
print('MMatchNN acc-tst= '+str(acc_amdslr_dr.mean())+'+-'
+str(acc_amdslr_dr.std()))
print("dslr->am")
print('SimpleNN acc-tst= '+str(acc_dslram.mean())+'+-'
+str(acc_dslram.std()))
print('MMatchNN acc-tst= '+str(acc_dslram_dr.mean())+'+-'
+str(acc_dslram_dr.std()))
print("wc->am")
print('SimpleNN acc-tst= '+str(acc_wcam.mean())+'+-'
+str(acc_wcam.std()))
print('MMatchNN acc-tst= '+str(acc_wcam_dr.mean())+'+-'
+str(acc_wcam_dr.std()))
print('------------------------------------------------------------------')
print("\nCreate t-SNE grafik...")
reg = DomainRegularizer(l=0.0, name='mmatch')
nn_am = NN(EXP_FOLDER, n_features=256, domain_regularizer=reg)
reg1 = DomainRegularizer(l=1.0, name='mmatch')
nn_am_dr = NN(EXP_FOLDER, n_features=256, domain_regularizer=reg1)
nn_am.fit(x_am, y_am, x_wc)
nn_am_dr.fit(x_am, y_am, x_wc)
cl_mouse = 14 # class of mouse images
acc_tst = nn_am.evaluate(x_wc[y_wc.argmax(1)==14],
y_wc[y_wc.argmax(1)==14])
acc_tst_dr = nn_am_dr.evaluate(x_wc[y_wc.argmax(1)==14],
y_wc[y_wc.argmax(1)==14])
print('mouse acc-tst= '+str(acc_tst))
print('mouse acc-tst-dr= '+str(acc_tst_dr))
plot_activations(EXP_FOLDER+'tsne_nn', nn_am, x_am, y_am, x_wc, y_wc,
lift=True, cl_lift=14)
plot_activations(EXP_FOLDER+'tsne_mmatch', nn_am_dr, x_am, y_am, x_wc,
y_wc, lift=True, cl_lift=14)