forked from zyang1580/CoLLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_collm_sasrec.py
137 lines (102 loc) · 4.13 KB
/
train_collm_sasrec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import argparse
import os
# import os
# os.environ['CURL_CA_BUNDLE'] = ''
# os.environ["CUDA_VISIBLE_DEVICES"]="4"
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import minigpt4.tasks as tasks
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank, init_distributed_mode
from minigpt4.datasets.datasets.rec_gnndataset import GnnDataset
from minigpt4.common.logger import setup_logger
from minigpt4.common.optims import (
LinearWarmupCosineLRScheduler,
LinearWarmupStepLRScheduler,
)
from minigpt4.common.registry import registry
from minigpt4.common.utils import now
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
from torch.distributed.elastic.multiprocessing.errors import *
import pandas as pd
def parse_args():
parser = argparse.ArgumentParser(description="Training")
# parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--cfg-path", default='train_configs/minigpt4rec_pretrain_sasrec_ood_cc.yaml', help="path to configuration file.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
# if 'LOCAL_RANK' not in os.environ:
# os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def get_runner_class(cfg):
"""
Get runner class from config. Default to epoch-based runner.
"""
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "rec_runner_base"))
return runner_cls
@record
def main():
# allow auto-dl completes on main process without timeout when using NCCL backend.
# os.environ["NCCL_BLOCKING_WAIT"] = "1"
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
job_id = now()
cfg = Config(parse_args())
init_distributed_mode(cfg.run_cfg)
setup_seeds(cfg)
# set after init_distributed_mode() to only log on master.
setup_logger()
# cfg.pretty_print()
task = tasks.setup_task(cfg)
datasets = task.build_datasets(cfg)
# cfg.model_cfg.get("user_num", "default")
data_name = list(datasets.keys())[0]
# if cfg.model_cfg.rec_model == 'lightgcn':
# gnndata = GnnDataset(cfg.model_cfg.rec_config,cfg.datasets_cfg.movielens.path) #movie_ood
# gnndata = GnnDataset(cfg.model_cfg.rec_config,cfg.datasets_cfg.movie_ood.path) #movie_ood
data_dir = "/home/sist/zyang/LLM/datasets/ml-1m/"
try: # movie
data_dir = cfg.datasets_cfg.movie_ood_sasrec.path
except: # amazon
data_dir = cfg.datasets_cfg.amazon_ood_sasrec.path
# data_dir = "/data/zyang/datasets/ml-1m/"
train_ = pd.read_pickle(data_dir+"train_ood2.pkl")
valid_ = pd.read_pickle(data_dir+"valid_ood2.pkl")
test_ = pd.read_pickle(data_dir+"test_ood2.pkl")
user_num = max(train_.uid.max(),valid_.uid.max(),test_.uid.max())+1
item_num = max(train_.iid.max(),valid_.iid.max(),test_.iid.max())+1
cfg.model_cfg.rec_config.user_num = int(user_num) #cfg.model_cfg.get("user_num",)
cfg.model_cfg.rec_config.item_num = int(item_num) #cfg.model_cfg.get("item_num", datasets[data_name]['train'].item_num)
cfg.pretty_print()
model = task.build_model(cfg)
runner = get_runner_class(cfg)(
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
)
runner.train()
if __name__ == "__main__":
main()