Preprocess the dataset to accelerate training. The following command generates 1M frames of training data from the whole nuPlan training set. You may need:
- change
cache.cache_path
to suit your condition - decrease/increase
worker.threads_per_node
depends on your RAM and CPU.
export PYTHONPATH=$PYTHONPATH:$(pwd)
python run_training.py \
py_func=cache +training=train_planTF \
scenario_builder=nuplan \
cache.cache_path=/nuplan/exp/cache_plantf_1M \
cache.cleanup_cache=true \
scenario_filter=training_scenarios_1M \
worker.threads_per_node=40
# Process the cache metadata CSV file to generate a quick index.
python .src/utils/update_cache_metadata_csv.py path/to/your/cache/matedata/xxx_metadata_xxx.csv
This process may take some time, be patient (20+hours in my setting).