-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patheval_occ.py
166 lines (133 loc) · 5.88 KB
/
eval_occ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os, time, argparse, os.path as osp, numpy as np
import torch
import torch.distributed as dist
# os.environ['CUDA_VISIBLE_DEVICES'] = '2'
from utils.metric_util import MeanIoU
from utils.load_save_util import revise_ckpt
from dataloader.dataset import get_nuScenes_label_name
from builder import loss_builder
from mmengine import Config
from mmengine.logging.logger import MMLogger
import warnings
warnings.filterwarnings("ignore")
def pass_print(*args, **kwargs):
pass
def main(local_rank, args):
# global settings
torch.backends.cudnn.benchmark = True
# load config
cfg = Config.fromfile(args.py_config)
dataset_config = cfg.dataset_params
ignore_label = dataset_config['ignore_label']
version = dataset_config['version']
train_dataloader_config = cfg.train_data_loader
val_dataloader_config = cfg.val_data_loader
grid_size = cfg.grid_size
# init DDP
if args.launcher == 'none':
distributed = False
rank = 0
cfg.gpu_ids = [0] # debug
else:
distributed = True
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", "20506")
hosts = int(os.environ.get("WORLD_SIZE", 1)) # number of nodes
rank = int(os.environ.get("RANK", 0)) # node id
gpus = torch.cuda.device_count() # gpus per node
print(f"tcp://{ip}:{port}")
dist.init_process_group(
backend="nccl", init_method=f"tcp://{ip}:{port}",
world_size=hosts * gpus, rank=rank * gpus + local_rank
)
world_size = dist.get_world_size()
cfg.gpu_ids = range(world_size)
torch.cuda.set_device(local_rank)
if dist.get_rank() != 0:
import builtins
builtins.print = pass_print
logger = MMLogger(name='eval_log', log_file=args.log_file, log_level='INFO')
# build model
from builder import model_builder
my_model = model_builder.build(cfg.model)
n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
logger.info(f'Number of params: {n_parameters}')
logger.info(f'Model:\n{my_model}')
if distributed:
find_unused_parameters = cfg.get('find_unused_parameters', True)
ddp_model_module = torch.nn.parallel.DistributedDataParallel
my_model = ddp_model_module(
my_model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
else:
my_model = my_model.cuda()
print('done ddp model')
# generate datasets
SemKITTI_label_name = get_nuScenes_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(cfg.unique_label)
unique_label_str = [SemKITTI_label_name[x] for x in unique_label]
from builder import data_builder
train_dataset_loader, val_dataset_loader = \
data_builder.build_occ(
dataset_config,
train_dataloader_config,
val_dataloader_config,
grid_size=grid_size,
version=version,
dist=distributed,
)
CalMeanIou_sem = MeanIoU(unique_label, ignore_label, unique_label_str, 'semantic')
CalMeanIou_geo = MeanIoU([1], ignore_label=255, label_str=['occupancy'], name='geometry')
# resume and load
assert osp.isfile(args.ckpt_path)
print('ckpt path:', args.ckpt_path)
map_location = 'cpu'
ckpt = torch.load(args.ckpt_path, map_location=map_location)
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
print(my_model.load_state_dict(revise_ckpt(ckpt), strict=False))
print(f'successfully loaded ckpt')
print_freq = cfg.print_freq
# eval
my_model.eval()
CalMeanIou_sem.reset()
CalMeanIou_geo.reset()
with torch.no_grad():
for i_iter_val, data in enumerate(val_dataset_loader):
(voxel_position_coarse, points, val_vox_label, val_grid) = data
points = points.cuda()
val_grid = val_grid.to(torch.float32).cuda()
val_grid_vox_coarse = voxel_position_coarse.to(torch.float32).cuda()
voxel_label = val_vox_label.type(torch.LongTensor).cpu()
predict_labels_vox = my_model(points=points, grid_ind=val_grid, grid_ind_vox=None,
grid_ind_vox_coarse=val_grid_vox_coarse, voxel_label=voxel_label, return_loss=False)
predict_labels_vox = torch.argmax(predict_labels_vox, dim=1).detach().cpu()
CalMeanIou_sem._after_step(predict_labels_vox.flatten(), voxel_label.flatten())
occ_gt_mask = (voxel_label != 0) & (voxel_label != 255)
voxel_label[occ_gt_mask] = 1
occ_pred_mask = (predict_labels_vox != 0)
predict_labels_vox[occ_pred_mask] = 1
CalMeanIou_geo._after_step(predict_labels_vox.flatten(), voxel_label.flatten())
if i_iter_val % print_freq == 0 and dist.get_rank() == 0:
logger.info('[EVAL] Iter %5d: Loss: None'%(i_iter_val))
val_miou_sem = CalMeanIou_sem._after_epoch()
val_miou_geo = CalMeanIou_geo._after_epoch()
logger.info('val miou is %.3f' % (val_miou_sem))
logger.info('val iou is %.3f' % (val_miou_geo))
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('--py-config', default='config/tpv_lidarseg.py')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='pytorch')
parser.add_argument('--ckpt-path', type=str, default=None)
parser.add_argument('--log-file', type=str, default=None)
args = parser.parse_args()
ngpus = torch.cuda.device_count()
args.gpus = ngpus
print(args)
if args.launcher == 'none':
main(0, args)
else:
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.gpus)