-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDivergence.v
554 lines (480 loc) · 18.7 KB
/
Divergence.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
From Coq Require Import Arith ZArith Psatz Bool String List.
From CDF Require Import Sequences IMP Compil.
(** * 6. Semantics of divergence, first part *)
(** Some proofs in this file are not constructive and use classical logic
through axioms, namely the axiom of excluded middle and an
axiom of description. These axioms are imported from the Coq
standard library. *)
From Coq Require Import Classical Description.
Check classic.
Check constructive_definite_description.
(** ** 6.1. Bounded interpreter *)
(** Let's reconsider the reference interpreter [cexec_f] from module [IMP],
rewritten in monadic style. Recall that termination of the interpreter
is ensured by the "fuel" parameter that decreases at each recursive call.
If the fuel drops to zero, the interpreter returns [None],
meaning that the final store at the end of the command execution
could not be determined: either the command diverges or we need more
fuel to execute it to completion. *)
Definition bind {A B: Type} (m: option A) (f: A -> option B) : option B :=
match m with None => None | Some s => f s end.
Fixpoint cinterp (fuel: nat) (c: com) (s: store) : option store :=
match fuel with
| O => None
| S n =>
match c with
| SKIP => Some s
| ASSIGN x a => Some (update x (aeval a s) s)
| SEQ c1 c2 => bind (cinterp n c1 s) (cinterp n c2)
| IFTHENELSE b c1 c2 =>
cinterp n (if beval b s then c1 else c2) s
| WHILE b c1 =>
if beval b s
then bind (cinterp n c1 s) (cinterp n (WHILE b c1))
else Some s
end
end.
(** A crucial property of this bounded interpreter is that the [cinterp]
function is monotonically increasing: more fuel gives a more defined
result according to the following [<<=] order. *)
Inductive lessdef {A: Type}: option A -> option A -> Prop :=
| lessdef_none: forall oa, lessdef None oa
| lessdef_some: forall a, lessdef (Some a) (Some a).
Notation "x <<= y" := (lessdef x y) (at level 70, no associativity).
Local Hint Constructors lessdef : lessdef.
Remark lessdef_refl: forall (A: Type) (x: option A), x <<= x.
Proof.
destruct x; auto with lessdef.
Qed.
Remark bind_mono: forall (A B: Type) (x x': option A) (f f': A -> option B),
x <<= x' -> (forall v, f v <<= f' v) ->
bind x f <<= bind x' f'.
Proof.
intros. destruct H; cbn; auto with lessdef.
Qed.
Lemma cinterp_mono:
forall i j c s, i <= j -> cinterp i c s <<= cinterp j c s.
Proof.
induction i as [ | i]; intros; cbn.
- auto with lessdef.
- destruct j as [ | j]. lia. cbn.
destruct c; auto with lessdef.
+ apply bind_mono. apply IHi; lia. intros; apply IHi; lia.
+ apply IHi; lia.
+ destruct (beval b s); auto with lessdef.
apply bind_mono. apply IHi; lia. intros; apply IHi; lia.
Qed.
(** ** 6.2. From the bounded interpreter to a denotational semantics *)
(** Any sequence [nat -> option A] that is increasing for the [<<=] order
is constant: once a certain index is reached, the values in the
sequence no longer change. The value in question is called the limit of
the sequence. *)
Section LIMIT.
Context {A: Type} (f: nat -> option A).
Hypothesis f_mono: forall i j, i <= j -> f i <<= f j.
Lemma limit_exists:
{ lim : option A | exists i, forall j, i <= j -> f j = lim }.
Proof.
apply constructive_definite_description.
destruct (classic (forall i, f i = None)) as [DIV|TERM].
- exists None; split.
+ exists O; auto.
+ intros lim (i & LIM). rewrite <- (DIV i). apply LIM; lia.
- apply not_all_ex_not in TERM. destruct TERM as (i & TERM).
exists (f i); split.
+ exists i; intros. destruct (f_mono i j H). congruence. auto.
+ intros lim (i2 & LIM2). set (j := Nat.max i i2).
rewrite <- (LIM2 j) by lia.
destruct (f_mono i j). lia. congruence. auto.
Qed.
Definition limit : option A := proj1_sig limit_exists.
Lemma limit_charact: exists i, forall j, i <= j -> f j = limit.
Proof.
unfold limit; apply proj2_sig.
Qed.
End LIMIT.
(** We define the denotation of a command [c] in initial store [s]
as the limit of the interpretation of [c] when fuel goes to infinity. *)
Definition denot (c: com) (s: store) : option store :=
limit (fun n => cinterp n c s) (fun i j => cinterp_mono i j c s).
Lemma denot_charact:
forall c s, exists i, forall j, i <= j -> cinterp j c s = denot c s.
Proof.
intros. apply limit_charact.
Qed.
Lemma denot_unique:
forall c s i lim,
(forall j, i <= j -> cinterp j c s = lim) -> denot c s = lim.
Proof.
intros. destruct (denot_charact c s) as (i' & LIM').
set (j := Nat.max i i').
rewrite <- (H j), <- (LIM' j) by lia. auto.
Qed.
Lemma denot_some: forall n c s s',
cinterp n c s = Some s' -> denot c s = Some s'.
Proof.
intros. apply denot_unique with n.
intros. destruct (cinterp_mono n j c s H0); congruence.
Qed.
Lemma denot_none: forall c s,
(forall n, cinterp n c s = None) <-> denot c s = None.
Proof.
intros; split; intros.
- apply denot_unique with O. auto.
- destruct (cinterp n c s) as [s'|] eqn:C; auto.
apply denot_some in C. congruence.
Qed.
Lemma denot_eq: forall c s n,
cinterp n c s = None \/ cinterp n c s = denot c s.
Proof.
intros. destruct (cinterp n c s) as [s'|] eqn:C; auto.
right; symmetry; apply denot_some with n; auto.
Qed.
(** This definition of [denot] satisfies the expected equations for
an IMP denotational semantics. *)
Lemma denot_skip: forall s,
denot SKIP s = Some s.
Proof.
intros. apply denot_some with 1. auto.
Qed.
Lemma denot_assign: forall x a s,
denot (ASSIGN x a) s = Some (update x (aeval a s) s).
Proof.
intros. apply denot_some with 1. auto.
Qed.
Lemma denot_seq: forall c1 c2 s,
denot (SEQ c1 c2) s = bind (denot c1 s) (denot c2).
Proof.
intros. unfold bind.
destruct (denot_charact c1 s) as (i1 & LIM1).
destruct (denot c1 s) as [s1|] eqn:D1.
- destruct (denot_charact c2 s1) as (i2 & LIM2).
apply denot_unique with (S (Nat.max i1 i2)); intros.
destruct j as [ | j]. lia. cbn.
unfold bind. rewrite LIM1, LIM2 by lia. auto.
- apply denot_none. intros. destruct n; cbn; auto.
destruct (denot_eq c1 s n) as [E|E]; rewrite E, ?D1; auto.
Qed.
Lemma denot_ifthenelse: forall b c1 c2 s,
denot (IFTHENELSE b c1 c2) s = if beval b s then denot c1 s else denot c2 s.
Proof.
intros.
set (c := if beval b s then c1 else c2).
destruct (denot_charact c s) as (i & LIM).
apply denot_unique with (S i). intros. destruct j as [ | j]. lia.
cbn. rewrite LIM by lia. unfold c; destruct (beval b s); auto.
Qed.
Lemma denot_while: forall b c s,
denot (WHILE b c) s =
if beval b s then bind (denot c s) (denot (WHILE b c)) else Some s.
Proof.
intros. rewrite <- denot_seq. set (c' := c ;; WHILE b c).
destruct (denot_charact c' s) as (i & LIM).
apply denot_unique with (S i). intros. destruct j as [ | j]. lia.
cbn. destruct (beval b s). apply (LIM (S j)). lia.
auto.
Qed.
(** Moreover, the denotation of a loop is the least function
[F: store -> option store] that satisfies the loop equation above. *)
Lemma denot_while_min: forall b c F,
(forall s, F s = if beval b s then bind (denot c s) F else Some s) ->
(forall s, denot (WHILE b c) s <<= F s).
Proof.
intros b c F EQ.
assert (REC: forall n s, cinterp n (WHILE b c) s <<= F s).
{ induction n as [ | n]; intros; cbn.
- auto with lessdef.
- rewrite EQ. destruct (beval b s); auto with lessdef.
apply bind_mono; auto with lessdef.
destruct (denot_eq c s n) as [E|E]; rewrite E; auto using lessdef_refl with lessdef.
}
intros. destruct (denot_charact (WHILE b c) s) as (i & LIM).
rewrite <- (LIM i) by lia. apply REC.
Qed.
(** Equivalence with natural semantics. One direction of the equivalence
is a simple induction on a derivation of [cexec s c s'],
using the denotational semantics equations. *)
Lemma cexec_denot: forall s c s', cexec s c s' -> denot c s = Some s'.
Proof.
induction 1; intros.
- apply denot_skip.
- apply denot_assign.
- rewrite denot_seq, IHcexec1; auto.
- rewrite denot_ifthenelse. destruct (beval b s); auto.
- rewrite denot_while, H. auto.
- rewrite denot_while, H, IHcexec1; auto.
Qed.
(** In the other direction, we first show, by induction over [n],
that [cinterp n c s = Some s'] implies [cexec s c s']. *)
Lemma cinterp_cexec: forall n c s s', cinterp n c s = Some s' -> cexec s c s'.
Proof.
induction n as [ | n]; simpl; intros.
- discriminate.
- destruct c.
+ inversion H; apply cexec_skip.
+ inversion H; apply cexec_assign.
+ destruct (cinterp n c1 s) as [s1|] eqn:C1; try discriminate. simpl in H.
apply cexec_seq with s1; auto.
+ apply cexec_ifthenelse; auto.
+ destruct (beval b s) eqn:B.
* destruct (cinterp n c s) as [s1|] eqn:C1; try discriminate. simpl in H.
apply cexec_while_loop with s1; auto.
* inversion H; subst; apply cexec_while_done; auto.
Qed.
(** The result follow from the definition of [denot] as a limit. *)
Lemma denot_cexec: forall s c s', denot c s = Some s' -> cexec s c s'.
Proof.
intros. destruct (denot_charact c s) as (i & LIM).
apply cinterp_cexec with i. rewrite LIM by lia. auto.
Qed.
(** ** 6.3. Coinductive natural semantics *)
(** The predicate [cexecinf s c] means that command [c] started in
initial store [s] diverges. The predicate is defined coinductively
in natural semantics style. *)
CoInductive cexecinf: store -> com -> Prop :=
| cexecinf_seq_1: forall c1 c2 s,
cexecinf s c1 -> cexecinf s (SEQ c1 c2)
| cexecinf_seq_2: forall c1 c2 s s',
cexec s c1 s' -> cexecinf s' c2 -> cexecinf s (SEQ c1 c2)
| cexecinf_ifthenelse: forall b c1 c2 s,
cexecinf s (if beval b s then c1 else c2) ->
cexecinf s (IFTHENELSE b c1 c2)
| cexecinf_while_1: forall b c s,
beval b s = true -> cexecinf s c ->
cexecinf s (WHILE b c)
| cexecinf_while_2: forall b c s s',
beval b s = true -> cexec s c s' -> cexecinf s' (WHILE b c) ->
cexecinf s (WHILE b c).
(** It is easy to show that the loop [WHILE TRUE SKIP] diverges
according to this semantics. *)
Remark cexecinf_while_true_skip:
forall s, cexecinf s (WHILE TRUE SKIP).
Proof.
cofix CIH; intros.
eapply cexecinf_while_2.
auto.
apply cexec_skip.
apply CIH.
Qed.
(** Going further, we show that if [cexecinf s c] is derivable,
there exists an infinite sequence of reductions from [c,s]. *)
Lemma red_seq_steps_plus:
forall c2 s c s' c',
plus red (c, s) (c', s') -> plus red ((c;;c2), s) ((c';;c2), s').
Proof.
intros. inversion H; subst. destruct b as [c1 s1].
econstructor. apply red_seq_step; eauto. apply red_seq_steps; auto.
Qed.
Lemma cexecinf_productive: forall c s,
cexecinf s c -> exists c' s', plus red (c, s) (c', s') /\ cexecinf s' c'.
Proof.
induction c; intros s EXEC; inversion EXEC; subst.
- destruct (IHc1 _ H1) as (c' & s' & R & E).
exists (c' ;; c2), s'; split.
apply red_seq_steps_plus; auto.
apply cexecinf_seq_1; auto.
- exists c2, s'; split.
eapply plus_right. apply red_seq_steps. apply cexec_to_reds; eauto.
constructor.
auto.
- do 2 econstructor; split.
apply plus_one. constructor.
auto.
- do 2 econstructor; split.
apply plus_one. apply red_while_loop; auto.
apply cexecinf_seq_1; auto.
- do 2 econstructor; split.
eapply plus_right.
eapply star_step. apply red_while_loop; auto.
apply red_seq_steps. apply cexec_to_reds; eauto.
constructor.
auto.
Qed.
Lemma cexecinf_to_diverges:
forall s c, cexecinf s c -> diverges s c.
Proof.
intros. set (X := fun cs => cexecinf (snd cs) (fst cs)).
red. apply (infseq_coinduction_principle X).
- intros (c1 & s1) D.
destruct (cexecinf_productive _ _ D) as (c2 & s2 & P & D').
exists (c2, s2); auto.
- auto.
Qed.
(** The converse implication --- from an infinite sequence of reductions,
build a derivation of [cexecinf s c] --- is more difficult. *)
(** Given a configuration [(c, s)], we want to know whether reductions
terminate in a finite number of steps on [("SKIP", s')] or an
infinite sequence of reductions is possible. This is the halting
problem in a disguise. Therefore, the proof is non-constructive
by necessity, and uses the excluded middle axiom. *)
Lemma red_progress:
forall c s, c = SKIP \/ exists c', exists s', red (c, s) (c', s').
Proof.
induction c; intros.
- auto.
- right; do 2 econstructor; apply red_assign.
- right. destruct (IHc1 s) as [E | (c1' & s' & R)].
+ subst c1. do 2 econstructor; apply red_seq_done.
+ do 2 econstructor; apply red_seq_step; eauto.
- right. do 2 econstructor; apply red_ifthenelse.
- right. destruct (beval b s) eqn:B.
+ do 2 econstructor; apply red_while_loop; auto.
+ do 2 econstructor; apply red_while_done; auto.
Qed.
Lemma terminates_or_diverges:
forall c s, diverges s c \/ exists s', terminates s c s'.
Proof.
intros. destruct (classic (all_seq_inf red (c, s))).
- left. apply infseq_if_all_seq_inf; auto.
- apply not_all_ex_not in H. destruct H as ((c' & s') & H).
apply imply_to_and in H. destruct H as [STAR H].
destruct (red_progress c' s') as [E | (c'' & s'' & RED)].
subst c'. right; exists s'; auto.
elim H; exists (c'', s''); auto.
Qed.
(** We can, then, show inversion lemmas that analyze the structure
of infinite reduction sequences for [SEQ] and [WHILE] commands. *)
Lemma diverges_steps_inv: forall c s c' s',
diverges s c -> star red (c, s) (c', s') -> diverges s' c'.
Proof.
intros. apply infseq_star_inv with (c, s); auto.
intros; eapply red_determ; eauto.
Qed.
Lemma terminates_not_diverges:
forall s c s', terminates s c s' -> diverges s c -> False.
Proof.
intros.
assert (D: diverges s' SKIP).
{ eapply diverges_steps_inv; eauto. }
apply infseq_inv in D. destruct D as (b & R & I). inversion R.
Qed.
Lemma diverges_seq_inv: forall s c1 c2,
diverges s (c1 ;; c2) ->
diverges s c1 \/ exists s', terminates s c1 s' /\ diverges s' c2.
Proof.
intros. destruct (terminates_or_diverges c1 s) as [D | (s' & T)].
- auto.
- right; exists s'; split; auto.
eapply diverges_steps_inv. eauto.
eapply star_trans. apply red_seq_steps; eauto.
apply star_one; constructor.
Qed.
Lemma diverges_loop_inv: forall s b c,
diverges s (WHILE b c) ->
beval b s = true /\
(diverges s c \/ exists s', terminates s c s' /\ diverges s' (WHILE b c)).
Proof.
intros. apply infseq_inv in H. destruct H as ((c1 & s1) & R1 & INF1).
inversion R1; subst.
- elim (terminates_not_diverges s1 SKIP s1); auto. apply star_refl.
- split; auto.
destruct (terminates_or_diverges c s1) as [D | (s2 & T)].
+ auto.
+ right; exists s2; split; auto.
eapply diverges_steps_inv. eauto.
eapply star_trans. apply red_seq_steps; eauto.
apply star_one; constructor.
Qed.
(** Finally we prove the expected implication, by coinduction. *)
Lemma diverges_to_cexecinf:
forall s c, diverges s c -> cexecinf s c.
Proof.
cofix CIH; intros s c D. destruct c.
- (* SKIP *)
eelim terminates_not_diverges; eauto. apply star_refl.
- (* ASSIGN *)
eelim terminates_not_diverges; eauto. apply star_one. constructor.
- (* SEQ *)
destruct (diverges_seq_inv _ _ _ D) as [D1 | (s' & T1 & D2)].
+ apply cexecinf_seq_1; auto.
+ apply cexecinf_seq_2 with s'; auto using reds_to_cexec.
- (* IFTHENELSE *)
apply infseq_inv in D. destruct D as ((c' & s') & R & D).
inversion R; subst.
apply cexecinf_ifthenelse; auto.
- (* WHILE *)
destruct (diverges_loop_inv _ _ _ D) as (B & [D1 | (s' & T1 & D2)]).
+ apply cexecinf_while_1; auto.
+ apply cexecinf_while_2 with s'; auto using reds_to_cexec.
Qed.
(** ** 6.4. Application to compiler verification *)
Local Open Scope Z_scope.
(** In the second lecture, we used natural semantics to show that
terminating IMP programs are correctly compiled. *)
Lemma compile_com_correct_terminating:
forall s c s',
cexec s c s' ->
forall C pc σ,
code_at C pc (compile_com c) ->
transitions C
(pc, σ, s)
(pc + codelen (compile_com c), σ, s').
Proof Compil.compile_com_correct_terminating.
(** That was a nice proof, but it gave no guarantees on the compilation
of diverging IMP programs. That led us to set up a different, more
complex proof based on transition semantics and simulation diagrams. *)
(** Now that we have a natural semantics for diverging programs,
we can use it to give a relatively simple proof that diverging
programs are compiled to machine code that runs forever. *)
Lemma compile_com_productive:
forall c s,
cexecinf s c ->
forall C pc σ,
code_at C pc (compile_com c) ->
exists c' pc' s',
plus (transition C) (pc, σ, s) (pc', σ, s')
/\ cexecinf s' c'
/\ code_at C pc' (compile_com c').
Proof.
induction c; intros s EXEC C pc σ CODEAT;
inversion EXEC; subst; clear EXEC; simpl in CODEAT.
- (* SEQ, left *)
eapply IHc1; eauto with code.
- (* SEQ, right *)
edestruct IHc2 as (c' & pc' & s'' & PLUS & EXEC' & CODEAT'); eauto with code.
exists c', pc', s''; split; auto.
eapply star_plus_trans. eapply compile_com_correct_terminating; eauto with code. exact PLUS.
- (* IFTHENELSE *)
set (code1 := compile_com c1) in *.
set (code2 := compile_com c2) in *.
set (codeb := compile_bexp b 0 (codelen code1 + 1)) in *.
destruct (beval b s) eqn:B.
+ (* The "then" branch is executed *)
edestruct IHc1 as (c' & pc' & s' & PLUS & EXEC' & CODEAT'); eauto with code.
exists c', pc', s'; split; auto.
eapply star_plus_trans. eapply compile_bexp_correct with (b := b); eauto with code.
fold codeb. rewrite B. autorewrite with code. eexact PLUS.
+ (* The "else" branch is executed *)
edestruct IHc2 as (c' & pc' & s' & PLUS & EXEC' & CODEAT'); eauto with code.
exists c', pc', s'; split; auto.
eapply star_plus_trans. eapply compile_bexp_correct with (b := b); eauto with code.
fold codeb. rewrite B. autorewrite with code. eexact PLUS.
- (* WHILE, first iteration diverges *)
edestruct IHc as (c' & pc' & s' & PLUS & EXEC' & CODEAT'); eauto with code.
exists c', pc', s'; split; auto.
eapply star_plus_trans. eapply compile_bexp_correct with (b := b); eauto with code.
rewrite H2. autorewrite with code. eexact PLUS.
- (* WHILE, first iteration terminates *)
exists (WHILE b c), pc, s'; split; auto.
eapply star_plus_trans. eapply compile_bexp_correct with (b := b); eauto with code.
rewrite H1. autorewrite with code.
eapply star_plus_trans. eapply compile_com_correct_terminating; eauto with code.
apply plus_one. eapply trans_branch. eauto with code. lia.
Qed.
Corollary compile_com_correct_diverging:
forall s c,
cexecinf s c ->
forall C pc σ,
code_at C pc (compile_com c) ->
infseq (transition C) (pc, σ, s).
Proof.
intros.
set (X := fun (pcss: config) =>
let '(pc, σ, s) := pcss in
exists c, cexecinf s c /\ code_at C pc (compile_com c)).
apply infseq_coinduction_principle with X.
- intros [[pc1 σ1] s1] (c1 & EXEC & CODEAT).
edestruct (compile_com_productive _ _ EXEC) as (c' & pc' & s' & PLUS & EXEC' & CODEAT'); eauto.
exists (pc', σ1, s'); split. exact PLUS. exists c'; auto.
- exists c; auto.
Qed.