-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathDenseNet.py
135 lines (108 loc) · 4.96 KB
/
DenseNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import math
import torch
import torch.nn as nn
import torch.nn.functional as func
from torchsummary import summary
class Bottleneck(nn.Module):
def __init__(self, in_planes, growth_rate):
super(Bottleneck, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, 4 * growth_rate, kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(4 * growth_rate)
self.conv2 = nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
def forward(self, x):
y = self.conv1(func.relu(self.bn1(x)))
y = self.conv2(func.relu(self.bn2(y)))
x = torch.cat([y, x], 1)
return x
class Transition(nn.Module):
def __init__(self, in_planes, out_planes):
super(Transition, self).__init__()
self.bn = nn.BatchNorm2d(in_planes)
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)
def forward(self, x):
x = self.conv(func.relu(self.bn(x)))
x = func.avg_pool2d(x, 2)
return x
class DenseNet(nn.Module):
def __init__(self, block, num_block, growth_rate=12, reduction=0.5, num_classes=10, fn_size=1, pool_size=7):
super(DenseNet, self).__init__()
self.growth_rate = growth_rate
self.pool_size = pool_size
num_planes = 2 * growth_rate
self.conv1 = nn.Conv2d(3, num_planes, kernel_size=7, stride=2, padding=3, bias=False)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.dense1 = self._make_dense_layers(block, num_planes, num_block[0])
num_planes += num_block[0] * growth_rate
out_planes = int(math.floor(num_planes * reduction))
self.trans1 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense2 = self._make_dense_layers(block, num_planes, num_block[1])
num_planes += num_block[1] * growth_rate
out_planes = int(math.floor(num_planes * reduction))
self.trans2 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense3 = self._make_dense_layers(block, num_planes, num_block[2])
num_planes += num_block[2] * growth_rate
out_planes = int(math.floor(num_planes * reduction))
self.trans3 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense4 = self._make_dense_layers(block, num_planes, num_block[3])
num_planes += num_block[3] * growth_rate
self.bn = nn.BatchNorm2d(num_planes)
self.linear = nn.Linear(num_planes * fn_size, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def _make_dense_layers(self, block, in_planes, num_block):
layers = []
for i in range(num_block):
layers.append(block(in_planes, self.growth_rate))
in_planes += self.growth_rate
return nn.Sequential(*layers)
def forward(self, x):
# print(1, x.size())
x = self.conv1(x)
# print(2, x.size())
x = self.pool1(x)
# print(3, x.size())
x = self.trans1(self.dense1(x))
# print(4, x.size())
x = self.trans2(self.dense2(x))
# print(5, x.size())
x = self.trans3(self.dense3(x))
# print(6, x.size())
x = self.dense4(x)
# print(7, x.size())
x = func.avg_pool2d(func.relu(self.bn(x)), self.pool_size)
# print(8, x.size())
x = x.view(x.size(0), -1)
# print(9, x.size())
x = self.linear(x)
x = nn.Softmax(1)(x)
# print(10, x.size())
return x
def DenseNet121(fn_size=1, pool_size=7, num_classes=4):
return DenseNet(Bottleneck, [6, 12, 24, 16], growth_rate=32, num_classes=num_classes, fn_size=fn_size, pool_size=pool_size)
def DenseNet169(fn_size=1, pool_size=7, num_classes=4):
return DenseNet(Bottleneck, [6, 12, 32, 32], growth_rate=32, num_classes=num_classes, fn_size=fn_size, pool_size=pool_size)
def DenseNet201(fn_size=1, pool_size=7, num_classes=4):
return DenseNet(Bottleneck, [6, 12, 48, 32], growth_rate=32, num_classes=num_classes, fn_size=fn_size, pool_size=pool_size)
def DenseNet161(fn_size=1, pool_size=7, num_classes=4):
return DenseNet(Bottleneck, [6, 12, 36, 24], growth_rate=48, num_classes=num_classes, fn_size=fn_size, pool_size=pool_size)
if __name__ == "__main__":
# size, fn_size, pool_size = 1024, 16, 8
# size, fn_size, pool_size = 512, 4, 8
# size, fn_size, pool_size = 256, 1, 8
size, fn_size, pool_size = 256, 4, 4
test_input = torch.rand(1, 3, size, size)
model = DenseNet121(fn_size, pool_size, 4)
summary(model, (3, size, size))
output = model(test_input)
print(output)