-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathprepare_data.py
50 lines (38 loc) · 1.35 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import os
from utils import get_spectrograms
import hyperparams as hp
import librosa
class PrepareDataset(Dataset):
"""LJSpeech dataset."""
def __init__(self, csv_file, root_dir):
"""
Args:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the wavs.
"""
self.landmarks_frame = pd.read_csv(csv_file, sep='|', header=None)
self.root_dir = root_dir
def load_wav(self, filename):
return librosa.load(filename, sr=hp.sample_rate)
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self, idx):
wav_name = os.path.join(
self.root_dir, self.landmarks_frame.ix[idx, 0]) + '.wav'
mel, _ = get_spectrograms(wav_name)
np.save(wav_name[:-4] + '.pt', mel)
# np.save(wav_name[:-4] + '.mag', mag)
sample = {'mel': mel}
return sample
if __name__ == '__main__':
dataset = PrepareDataset(os.path.join(
hp.data_path, 'metadata.csv'), os.path.join(hp.data_path, 'wavs'))
dataloader = DataLoader(dataset, batch_size=1,
drop_last=False, num_workers=6)
from tqdm import tqdm
pbar = tqdm(dataloader)
for d in pbar:
pass