-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslic_superpixels.py
349 lines (295 loc) · 13.7 KB
/
slic_superpixels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import warnings
from collections.abc import Iterable
import numpy as np
from scipy import ndimage as ndi
from scipy.spatial.distance import pdist, squareform
from scipy.cluster.vq import kmeans2
from numpy import random
from ._slic import (_slic_cython, _enforce_label_connectivity_cython)
from ..util import img_as_float, regular_grid
from ..color import rgb2lab
import cv2
def _get_mask_centroids(mask, n_centroids, multichannel):
"""Find regularly spaced centroids on a mask.
Parameters
----------
mask : 3D ndarray
The mask within which the centroids must be positioned.
n_centroids : int
The number of centroids to be returned.
Returns
-------
centroids : 2D ndarray
The coordinates of the centroids with shape (n_centroids, 3).
steps : 1D ndarray
The approximate distance between two seeds in all dimensions.
"""
# Get tight ROI around the mask to optimize
coord = np.array(np.nonzero(mask), dtype=float).T
# Fix random seed to ensure repeatability
rnd = random.RandomState(123)
# select n_centroids randomly distributed points from within the mask
idx_full = np.arange(len(coord), dtype=int)
idx = np.sort(rnd.choice(idx_full,
min(n_centroids, len(coord)),
replace=False))
# To save time, when n_centroids << len(coords), use only a subset of the
# coordinates when calling k-means. Rather than the full set of coords,
# we will use a substantially larger subset than n_centroids. Here we
# somewhat arbitrarily choose dense_factor=10 to make the samples
# 10 times closer together along each axis than the n_centroids samples.
dense_factor = 10
ndim_spatial = mask.ndim - 1 if multichannel else mask.ndim
n_dense = int((dense_factor ** ndim_spatial) * n_centroids)
if len(coord) > n_dense:
# subset of points to use for the k-means calculation
# (much denser than idx, but less than the full set)
idx_dense = np.sort(rnd.choice(idx_full,
n_dense,
replace=False))
else:
idx_dense = Ellipsis
centroids, _ = kmeans2(coord[idx_dense], coord[idx], iter=5)
# Compute the minimum distance of each centroid to the others
dist = squareform(pdist(centroids))
np.fill_diagonal(dist, np.inf)
closest_pts = dist.argmin(-1)
steps = abs(centroids - centroids[closest_pts, :]).mean(0)
return centroids, steps
def _get_grid_centroids(image, n_centroids):
"""Find regularly spaced centroids on the image.
Parameters
----------
image : 2D, 3D or 4D ndarray
Input image, which can be 2D or 3D, and grayscale or
multichannel.
n_centroids : int
The (approximate) number of centroids to be returned.
Returns
-------
centroids : 2D ndarray
The coordinates of the centroids with shape (~n_centroids, 3).
steps : 1D ndarray
The approximate distance between two seeds in all dimensions.
"""
d, h, w = image.shape[:3]
grid_z, grid_y, grid_x = np.mgrid[:d, :h, :w]
slices = regular_grid(image.shape[:3], n_centroids)
centroids_z = grid_z[slices].ravel()[..., np.newaxis]
centroids_y = grid_y[slices].ravel()[..., np.newaxis]
centroids_x = grid_x[slices].ravel()[..., np.newaxis]
centroids = np.concatenate([centroids_z, centroids_y, centroids_x],
axis=-1)
steps = np.asarray([float(s.step) if s.step is not None else 1.0
for s in slices])
return centroids, steps
def slic(image, point, cut, filename, n_segments=100, compactness=10., max_iter=10, sigma=0,
spacing=None, multichannel=True, convert2lab=None,
enforce_connectivity=True, min_size_factor=0.5, max_size_factor=3,
slic_zero=False, start_label=None, mask=None):
"""Segments image using k-means clustering in Color-(x,y,z) space.
Parameters
----------
image : 2D, 3D or 4D ndarray
Input image, which can be 2D or 3D, and grayscale or multichannel
(see `multichannel` parameter).
Input image must either be NaN-free or the NaN's must be masked out
n_segments : int, optional
The (approximate) number of labels in the segmented output image.
compactness : float, optional
Balances color proximity and space proximity. Higher values give
more weight to space proximity, making superpixel shapes more
square/cubic. In SLICO mode, this is the initial compactness.
This parameter depends strongly on image contrast and on the
shapes of objects in the image. We recommend exploring possible
values on a log scale, e.g., 0.01, 0.1, 1, 10, 100, before
refining around a chosen value.
max_iter : int, optional
Maximum number of iterations of k-means.
sigma : float or (3,) array-like of floats, optional
Width of Gaussian smoothing kernel for pre-processing for each
dimension of the image. The same sigma is applied to each dimension in
case of a scalar value. Zero means no smoothing.
Note, that `sigma` is automatically scaled if it is scalar and a
manual voxel spacing is provided (see Notes section).
spacing : (3,) array-like of floats, optional
The voxel spacing along each image dimension. By default, `slic`
assumes uniform spacing (same voxel resolution along z, y and x).
This parameter controls the weights of the distances along z, y,
and x during k-means clustering.
multichannel : bool, optional
Whether the last axis of the image is to be interpreted as multiple
channels or another spatial dimension.
convert2lab : bool, optional
Whether the input should be converted to Lab colorspace prior to
segmentation. The input image *must* be RGB. Highly recommended.
This option defaults to ``True`` when ``multichannel=True`` *and*
``image.shape[-1] == 3``.
enforce_connectivity : bool, optional
Whether the generated segments are connected or not
min_size_factor : float, optional
Proportion of the minimum segment size to be removed with respect
to the supposed segment size ```depth*width*height/n_segments```
max_size_factor : float, optional
Proportion of the maximum connected segment size. A value of 3 works
in most of the cases.
slic_zero : bool, optional
Run SLIC-zero, the zero-parameter mode of SLIC. [2]_
start_label: int, optional
The labels' index start. Should be 0 or 1.
.. versionadded:: 0.17
``start_label`` was introduced in 0.17
mask : 2D ndarray, optional
If provided, superpixels are computed only where mask is True,
and seed points are homogeneously distributed over the mask
using a K-means clustering strategy.
.. versionadded:: 0.17
``mask`` was introduced in 0.17
Returns
-------
labels : 2D or 3D array
Integer mask indicating segment labels.
Raises
------
ValueError
If ``convert2lab`` is set to ``True`` but the last array
dimension is not of length 3.
ValueError
If ``start_label`` is not 0 or 1.
Notes
-----
* If `sigma > 0`, the image is smoothed using a Gaussian kernel prior to
segmentation.
* If `sigma` is scalar and `spacing` is provided, the kernel width is
divided along each dimension by the spacing. For example, if ``sigma=1``
and ``spacing=[5, 1, 1]``, the effective `sigma` is ``[0.2, 1, 1]``. This
ensures sensible smoothing for anisotropic images.
* The image is rescaled to be in [0, 1] prior to processing.
* Images of shape (M, N, 3) are interpreted as 2D RGB images by default. To
interpret them as 3D with the last dimension having length 3, use
`multichannel=False`.
* `start_label` is introduced to handle the issue [4]_. The labels
indexing starting at 0 will be deprecated in future versions. If
`mask` is not `None` labels indexing starts at 1 and masked area
is set to 0.
References
----------
.. [1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,
Pascal Fua, and Sabine Süsstrunk, SLIC Superpixels Compared to
State-of-the-art Superpixel Methods, TPAMI, May 2012.
:DOI:`10.1109/TPAMI.2012.120`
.. [2] https://www.epfl.ch/labs/ivrl/research/slic-superpixels/#SLICO
.. [3] Irving, Benjamin. "maskSLIC: regional superpixel generation with
application to local pathology characterisation in medical images.",
2016, :arXiv:`1606.09518`
.. [4] https://github.com/scikit-image/scikit-image/issues/3722
Examples
--------
>>> from skimage.segmentation import slic
>>> from skimage.data import astronaut
>>> img = astronaut()
>>> segments = slic(img, n_segments=100, compactness=10)
Increasing the compactness parameter yields more square regions:
>>> segments = slic(img, n_segments=100, compactness=20)
"""
image = img_as_float(image)
use_mask = mask is not None
dtype = image.dtype
is_2d = False
if image.ndim == 2:
# 2D grayscale image
image = image[np.newaxis, ..., np.newaxis]
is_2d = True
elif image.ndim == 3 and multichannel:
# Make 2D multichannel image 3D with depth = 1
image = image[np.newaxis, ...]
is_2d = True
elif image.ndim == 3 and not multichannel:
# Add channel as single last dimension
image = image[..., np.newaxis]
if multichannel and (convert2lab or convert2lab is None):
if image.shape[-1] != 3 and convert2lab:
raise ValueError("Lab colorspace conversion requires a RGB image.")
elif image.shape[-1] == 3:
image = rgb2lab(image)
if start_label is None:
if use_mask:
start_label = 1
else:
warnings.warn("skimage.measure.label's indexing starts from 0. " +
"In future version it will start from 1. " +
"To disable this warning, explicitely " +
"set the `start_label` parameter to 1.",
FutureWarning, stacklevel=2)
start_label = 0
if start_label not in [0, 1]:
raise ValueError("start_label should be 0 or 1.")
# initialize cluster centroids for desired number of segments
update_centroids = False
if use_mask:
mask = np.ascontiguousarray(mask, dtype=bool).view('uint8')
if mask.ndim == 2:
mask = np.ascontiguousarray(mask[np.newaxis, ...])
if mask.shape != image.shape[:3]:
raise ValueError("image and mask should have the same shape.")
centroids, steps = _get_mask_centroids(mask, n_segments, multichannel)
update_centroids = True
else:
centroids, steps = _get_grid_centroids(image, n_segments)
# print(np.shape(centroids), np.shape(point))
vis = np.zeros((512, 512))
final_point = np.zeros((512, 512))
final_point[centroids[:, 1], centroids[:, 2]] = 255
final_point = final_point - final_point * (cut / 255)
x, y = np.where(final_point > 0)
final_map = np.zeros(np.shape(x))
final_map = np.vstack((final_map, x))
final_map = np.vstack((final_map, y))
final_map = (final_map.T).astype(int)
vis[final_map[:, 1], final_map[:, 2]] = 128
# print(np.shape(final_map))
centroids = np.vstack((final_map, point))
vis[point[:, 1], point[:, 2]] = 255
# print(centroids)
if spacing is None:
spacing = np.ones(3, dtype=dtype)
elif isinstance(spacing, (list, tuple)):
spacing = np.ascontiguousarray(spacing, dtype=dtype)
if not isinstance(sigma, Iterable):
sigma = np.array([sigma, sigma, sigma], dtype=dtype)
sigma /= spacing.astype(dtype)
elif isinstance(sigma, (list, tuple)):
sigma = np.array(sigma, dtype=dtype)
if (sigma > 0).any():
# add zero smoothing for multichannel dimension
sigma = list(sigma) + [0]
image = ndi.gaussian_filter(image, sigma)
n_centroids = centroids.shape[0]
segments = np.ascontiguousarray(np.concatenate(
[centroids, np.zeros((n_centroids, image.shape[3]))],
axis=-1), dtype=dtype)
# Scaling of ratio in the same way as in the SLIC paper so the
# values have the same meaning
step = max(steps)
ratio = 1.0 / compactness
image = np.ascontiguousarray(image * ratio, dtype=dtype)
if update_centroids:
# Step 2 of the algorithm [3]_
_slic_cython(image, mask, segments, step, max_iter, spacing,
slic_zero, ignore_color=True,
start_label=start_label)
labels = _slic_cython(image, mask, segments, step, max_iter,
spacing, slic_zero, ignore_color=False,
start_label=start_label)
if enforce_connectivity:
if use_mask:
segment_size = mask.sum() / n_centroids
else:
segment_size = np.prod(image.shape[:3]) / n_centroids
min_size = int(min_size_factor * segment_size)
max_size = int(max_size_factor * segment_size)
labels = _enforce_label_connectivity_cython(
labels, min_size, max_size, start_label=start_label)
if is_2d:
labels = labels[0]
return labels