-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbundle.py
141 lines (112 loc) · 4.79 KB
/
bundle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import warnings
from enum import Enum, auto
from typing import Optional
from qpsolvers import solve_qp
from algormeter.tools import counter, dbx
warnings.filterwarnings(action='error')
warnings.filterwarnings(action='ignore', category = UserWarning, message='.*Converted.*')
warnings.filterwarnings(action='once', category = UserWarning, message='.*maximum iterations reached.*')
warnings.filterwarnings(action='once', category = UserWarning, message='.*solved inaccurate.*')
warnings.filterwarnings(action='ignore', category = UserWarning,message='.*box cone proj hit maximum.*')
warnings.filterwarnings(action='once', category = UserWarning, message='.*INFEASIBLE_INACCURATE.*')
warnings.filterwarnings(action='once', category = UserWarning, message='.*SOLVED_INACCURATE.*')
class BundleElement :
def __init__(self,alpha : np.ndarray, beta : float, kind: Enum, lamb: float = 0):
self.alpha = np.array(alpha,dtype=float)
self.beta = beta[0].astype(float) if isinstance(beta,np.ndarray) else float(beta)
self.kind = kind
self.lamb = lamb
def __repr__(self):
return f'alpha:{self.alpha}\n\tbeta:{self.beta} kind:{self.kind} lamb:{self.lamb}\n'
class Bundle :
def __init__(self, lst = None):
self.elems = [] if lst is None else lst
self.qpstat = {} # Quadratic Problem Stat. key = enum G columns, val=#
def __repr__(self):
s = '{\n'
for i,e in enumerate(self.elems):
s += f'idx: {i}, {e}'
return s+'}\n'
def stat(self):
if len(self.qpstat) > 0:
s, m, e = 0, 0, 0
for k,v in self.qpstat.items():
s += k*v
e += v
if k > m:
m = k
counter.log(str(round(s/e,1)), 'avgRow', cls='qp')
counter.log(str(m),'maxRow', cls='qp')
def append(self,alpha : np.ndarray, beta : float, kind: Enum, lamb: float = 0.):
self.elems.append(BundleElement(alpha,beta,kind,lamb))
def appendItem(self, elem : BundleElement):
self.elems.append(elem)
def deleteByKind(self,kinds: list[Enum]) -> None:
self.elems = [e for e in self.elems if e.kind not in kinds]
def getFirstOfKind(self,kinds: list[Enum]) -> Optional[BundleElement]:
for e in self.elems:
if e.kind in kinds:
return e
return None
def deleteByLambdaLessAndNoKinds(self,tol: float, nokinds: list[Enum]) -> None:
self.elems = [e for e in self.elems if e.lamb > tol and e.kind not in nokinds]
def reset(self):
self.elems.clear()
def scan(self):
for e in self.elems:
yield e
def solve(self, rho:float, kinds: Optional[list [Enum]] = None):
G0, B0 = zip(*[[el.alpha, el.beta] for el in self.elems if kinds is None or el.kind in kinds])
match c := len(G0):
case 0:
raise ValueError ('Empty bundle')
case 1:
for el in self.elems:
if kinds is None or el.kind in kinds:
self.elems[0].lamb = 1 # affinchè non venga scartata
counter.up('1C', cls='qp')
gg = np.array(G0[0])
bb = np.array([0])
return gg, bb
case 2:
counter.up('2C', cls='qp')
self.qpstat[c] = self.qpstat[c]+1 if c in self.qpstat else 1
counter.up('solv', cls='qp')
G=np.array(G0, dtype=float).T
B=np.array(B0, dtype=float)
dbx.print('Matrix G:\n',G,'\nB:',B,'rho:',rho)
P = G.T @ G * rho
_,l = G.shape
q = B
A = np.ones(l)
b = np.array([1.])
lb = np.zeros(l)
ub = np.ones(l)
#QP Solver
# https://scaron.info/doc/qpsolvers/
# https://github.com/stephane-caron/qpsolvers
# https://osqp.org/docs/index.html
# https://www.cvxgrp.org/scs/index.html
# 'ecos', 'osqp', 'proxqp', 'quadprog', 'scs'
lam = solve_qp(P, q, None, None, A, b ,lb,ub, solver='scs')
# lam = solve_qp(P, q, None, None, A, b ,lb,ub, solver='gurobi')
if lam is None:
counter.up('Fail', cls='qp')
lam = np.ones(c)/c # kick off
if (lam < 0.).any():
counter.up('lb<0', cls='qp')
dbx.print('lam < 0')
for i, e in enumerate(self.elems) :
if kinds is None or e.kind in kinds:
e.lamb = lam[i]
else:
e.lamb = 0.
gg = G @ lam
bb = B @ lam
dbx.print('lam:',lam, 'gg:',gg, 'bb:',bb)
return gg,bb
def sortByLamb(self,reverse: bool = False):
self.elems.sort(key=lambda x : x.lamb,reverse= reverse)
def __len__(self):
return len(self.elems)