-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdemo_CamTest.m
149 lines (128 loc) · 5.21 KB
/
demo_CamTest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
clear all;clc;
run matconvnet/matlab/vl_setupnn ;
addpath ('matconvnet/examples') ;
addpath ('RegularFunction') ;
path1='.\models\DDCN-4C.mat';
path=path1;
snet = (load(path)) ;
snet2=snet.net;
net = dagnn.DagNN.loadobj(snet2) ;
predVar = net.getVarIndex('prediction') ;
inputVar = 'data' ;
rgbPath='E:\Camouflage Dataset\CamouflageData\img\';
semanicimg_savePath='result\DDCN\';
semspopt_savePath='result\Final\';
if ~exist(semanicimg_savePath, 'dir')
mkdir(semanicimg_savePath);
end
if ~exist(semspopt_savePath, 'dir')
mkdir(semspopt_savePath);
end
images = dir([rgbPath, '*.jpg']);
imagenum = length(images);
parfor i=1:imagenum
imagename=[rgbPath,images(i).name];
rgb = single(imread(imagename));
I=imread(imagename);
h = size(rgb,1) ;
w = size(rgb,2) ;
pixNumInSP = 200; %pixels in each superpixel
spnumber = round( h * w / pixNumInSP ); %super-pixel number for current image
[idxImg, adjcMatrix, pixelList] = SLIC_Split(I, spnumber);
spNum=max(idxImg(:));
bdIds = GetBndPatchIds(idxImg);
meanRgbCol = GetMeanColor(I, pixelList);
meanLabCol = colorspace('Lab<-', double(meanRgbCol));
meanPos = GetNormedMeanPos(pixelList, h, w);
colDistM = GetDistanceMatrix(meanLabCol);
posDistM = GetDistanceMatrix(meanPos);
[clipVal, geoSigma, neiSigma] = EstimateDynamicParas(adjcMatrix, colDistM);
[bgProb, bdCon, bgWeight] = EstimateBgProb(colDistM, adjcMatrix, bdIds, clipVal, geoSigma);
rgb1=rgb(:,:,1);rgb2=rgb(:,:,2);rgb3=rgb(:,:,3);
crgb1(:,:,1)=rgb1(1:384,1:384);
crgb1(:,:,2)=rgb2(1:384,1:384);
crgb1(:,:,3)=rgb3(1:384,1:384);
crgb2(:,:,1)=rgb1(1:384,284:284+384-1);
crgb2(:,:,2)=rgb2(1:384,284:284+384-1);
crgb2(:,:,3)=rgb3(1:384,284:284+384-1);
crgb3(:,:,1)=rgb1(1:384,471:854);
crgb3(:,:,2)=rgb2(1:384,471:854);
crgb3(:,:,3)=rgb3(1:384,471:854);
crgb4(:,:,1)=rgb1(97:480,1:384);
crgb4(:,:,2)=rgb2(97:480,1:384);
crgb4(:,:,3)=rgb3(97:480,1:384);
crgb5(:,:,1)=rgb1(97:480,284:284+384-1);
crgb5(:,:,2)=rgb2(97:480,284:284+384-1);
crgb5(:,:,3)=rgb3(97:480,284:284+384-1);
crgb6(:,:,1)=rgb1(97:480,471:854);
crgb6(:,:,2)=rgb2(97:480,471:854);
crgb6(:,:,3)=rgb3(97:480,471:854);
rgbmean(1,1,1)=123.680;rgbmean(1,1,2)=116.779;rgbmean(1,1,3)=103.9390;
net.mode = 'test' ;
[output1,pre1]=imforwardpre(crgb1,rgbmean,net,predVar);
output1(output1==1)=0; output1(output1==2)=1;
[output2,pre2]=imforwardpre(crgb2,rgbmean,net,predVar);
output2(output2==1)=0; output2(output2==2)=1;
[output3,pre3]=imforwardpre(crgb3,rgbmean,net,predVar);
output3(output3==1)=0; output3(output3==2)=1;
[output4,pre4]=imforwardpre(crgb4,rgbmean,net,predVar);
output4(output4==1)=0; output4(output4==2)=1;
[output5,pre5]=imforwardpre(crgb5,rgbmean,net,predVar);
output5(output5==1)=0; output5(output5==2)=1;
[output6,pre6]=imforwardpre(crgb6,rgbmean,net,predVar);
output6(output6==1)=0; output6(output6==2)=1;
output=zeros(h,w);
padcoutput1=zeros(h,w);padcoutput1(1:384,1:384)=output1;
padcoutput2=zeros(h,w);padcoutput2(1:384,284:284+384-1)=output2;
padcoutput3=zeros(h,w);padcoutput3(1:384,471:854)=output3;
padcoutput4=zeros(h,w);padcoutput4(97:480,1:384)=output4;
padcoutput5=zeros(h,w);padcoutput5(97:480,284:284+384-1)=output5;
padcoutput6=zeros(h,w);padcoutput6(97:480,471:854)=output6;
output=padcoutput1+padcoutput2+padcoutput3+padcoutput4+padcoutput5+padcoutput6;
output(output>=1)=1; output(output<1)=0;
labelseg=bwlabel(output);
semanticregion_pixel=cell(1,max(labelseg(:)));
removeindex=[];
for jj=1:max(labelseg(:))
semanticregion_pixel{jj}=find(labelseg==jj);
if length(semanticregion_pixel{jj})<200
output(find(labelseg==jj))=0;
end
end
labelseg2=bwlabel(output);uindex=unique(labelseg2);
bdimg=zeros(h,w);bdimg(2:end-1,2:end-1)=1;bdimg=1-bdimg;
bdcon=zeros(1,max(uindex));
for jj=1:max(uindex)
imgtem=(labelseg2==jj);
len=sum(sum((imgtem.*bdimg)));
area=sum(imgtem(:));
bdcon(jj)=len/sqrt(area);
if bdcon(jj)>0.9
output(labelseg2==jj)=0;
end
end
labelseg2=bwlabel(output);uindex=unique(labelseg2);
if length(uindex)>1
label=GetMeanColor(output, pixelList);
label=normalize(label(:,1));
spfgimg=zeros(h,w);
spbgimg=zeros(h,w);
for j=1:spNum
spfgimg(find(idxImg==j))=label(j);
end
optwCtr=SaliencyOptimization(adjcMatrix, bdIds, colDistM, neiSigma, 1-label, label)
salimg=zeros(h,w);
for j=1:spNum
salimg(find(idxImg==j))=optwCtr(j);
end
else
spfgimg=output;
salimg=output;
end
savename=images(i).name;
bdindex=find(savename=='.');
eindex=bdindex(end);
savename=savename(1:eindex-1);
imwrite(mat2gray(output), [semanicimg_savePath,savename,'.png'], 'png');
imwrite(mat2gray(salimg), [semspopt_savePath,savename,'.png'], 'png');
end