-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathbert_tagger.py
344 lines (306 loc) · 16.1 KB
/
bert_tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from __future__ import absolute_import, division, print_function
import argparse
import csv
import logging
import os
import random
import sys
import pickle
# os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import numpy as np
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertPreTrainedModel, BertModel, BertConfig, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from bert_util import *
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--task",
default=None,
type=str,
required=True,
help="Sentiment analysis or natural language inference? (SA or NLI)")
## Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--trained_model_dir",
default="",
type=str,
help="Where is the fine-tuned (with the cloze-style LM objective) BERT model?")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test",
action='store_true',
help="Whether to run eval on the test set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--freeze_bert',
action='store_true',
help="Whether to freeze BERT")
parser.add_argument('--full_bert',
action='store_true',
help="Whether to use full BERT")
parser.add_argument('--num_train_samples',
type=int,
default=-1,
help="-1 for full train set, otherwise please specify")
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval and not args.do_test:
raise ValueError("At least one of `do_train` or `do_eval` or `do_test` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
logger.info("WARNING: Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Prepare data processor
mnli_processor = MnliProcessor()
hans_processor = HansProcessor()
sst_processor = Sst2Processor()
if args.task == "SA":
label_list = sst_processor.get_labels()
elif args.task == "NLI":
label_list = mnli_processor.get_labels()
else:
raise ValueError("")
num_labels = len(label_list)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
# Prepare training data
train_examples = None
num_train_optimization_steps = None
if args.do_train:
if args.task == "SA":
train_examples = sst_processor.get_train_examples(args.data_dir, args.num_train_samples)
elif args.task == "NLI":
train_examples = mnli_processor.get_train_examples(args.data_dir, args.num_train_samples)
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size) * args.num_train_epochs
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(-1))
if args.trained_model_dir: # load in fine-tuned (with cloze-style LM objective) model
if os.path.exists(os.path.join(args.output_dir, WEIGHTS_NAME)):
previous_state_dict = torch.load(os.path.join(args.output_dir, WEIGHTS_NAME))
else:
from collections import OrderedDict
previous_state_dict = OrderedDict()
distant_state_dict = torch.load(os.path.join(args.trained_model_dir, WEIGHTS_NAME))
previous_state_dict.update(distant_state_dict) # note that the final layers of previous model and distant model must have different attribute names!
model = MyBertForSequenceClassification.from_pretrained(args.trained_model_dir, state_dict=previous_state_dict, num_labels=num_labels)
else:
model = MyBertForSequenceClassification.from_pretrained(args.bert_model, cache_dir=cache_dir, num_labels=num_labels)
if args.fp16:
model.half()
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
if args.freeze_bert: # freeze BERT if needed
frozen = ['bert']
elif args.full_bert:
frozen = []
else:
frozen = ['bert.embeddings.',
'bert.encoder.layer.0.',
'bert.encoder.layer.1.',
'bert.encoder.layer.2.',
'bert.encoder.layer.3.',
'bert.encoder.layer.4.',
'bert.encoder.layer.5.',
'bert.encoder.layer.6.',
'bert.encoder.layer.7.',
] # *** change here to filter out params we don't want to track ***
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if (not any(fr in n for fr in frozen)) and (not any(nd in n for nd in no_decay))], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if (not any(fr in n for fr in frozen)) and (any(nd in n for nd in no_decay))], 'weight_decay': 0.0}
]
if args.fp16:
raise ValueError("Not sure if FP16 precision works yet.")
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
if args.do_train:
global_step = 0
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_id = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_id)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
model.train()
# model.eval() # train in eval mode to avoid dropout
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
epoch_loss = []
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
epoch_loss.append(loss.item())
logger.info(" epoch loss = %f", np.mean(epoch_loss))
if args.do_train:
# Save a trained model and the associated configuration
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
with open(output_config_file, 'w') as f:
f.write(model_to_save.config.to_json_string())
if args.do_test:
if args.task == "SA":
test_examples = sst_processor.get_dev_examples(args.data_dir)
elif args.task == "NLI":
test_examples = mnli_processor.get_dev_examples(args.data_dir)
test_features = convert_examples_to_features(
test_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running final test *****")
logger.info(" Num examples = %d", len(test_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long)
all_label_id = torch.tensor([f.label_id for f in test_features], dtype=torch.long)
all_guid = torch.tensor([f.guid for f in test_features], dtype=torch.long)
test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_id, all_guid)
# Run prediction for full data
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size)
model.eval()
test_loss, test_accuracy = 0, 0
nb_test_steps, nb_test_examples = 0, 0
wrong_list = []
for input_ids, input_mask, segment_ids, label_ids, guids in tqdm(test_dataloader, desc="Testing"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_test_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_test_correct, tmp_test_total = accuracy(logits, label_ids)
assert tmp_test_total == 1
if tmp_test_correct == 0:
wrong_list.append(guids[0].item())
test_loss += tmp_test_loss.mean().item()
test_accuracy += tmp_test_correct
nb_test_examples += tmp_test_total
nb_test_steps += 1
test_loss = test_loss / nb_test_steps
test_accuracy = test_accuracy / nb_test_examples
result = {'test_loss': test_loss,
'test_accuracy': test_accuracy}
output_test_file = os.path.join(args.output_dir, "test_results.txt")
with open(output_test_file, "w") as writer:
logger.info("***** Test results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
# pickle.dump(wrong_list, open(os.path.join(args.output_dir, "wrong_pred_guid.txt"), "wb"))
if __name__ == "__main__":
main()