-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfive.py
120 lines (85 loc) · 4.26 KB
/
five.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import backtrader as bt
import pandas as pd
from datetime import datetime
# Create a Stratey
class TestStrategy(bt.Strategy):
params = (('maperiod', 20), ('printlog', False))
def log(self, txt, dt=None, doprint=False):
''' Logging function fot this strategy'''
if self.params.printlog or doprint:
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
# Keep a reference to the "close" line in the data[0] dataseries
self.dataclose = self.datas[0].close
# To keep track of pending orders and buy price/commission
self.order = None
self.buyprice = None
self.buycomm = None
# Add a MovingAverageSimple indicator
self.sma = bt.indicators.SimpleMovingAverage(self.datas[0], period=self.params.maperiod)
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
# Check if an order has been completed
# Attention: broker could reject order if not enough cash
if order.status in [order.Completed]:
if order.isbuy():
self.log('BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
else: # Sell
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm))
self.bar_executed = len(self)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log('Order Canceled/Margin/Rejected')
self.order = None
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm))
def next(self):
# Simply log the closing price of the series from the reference
self.log('Close, %.2f' % self.dataclose[0])
# Check if an order is pending ... if yes, we cannot send a 2nd one
if self.order:
return
# Check if we are in the market
if not self.position:
# 大于均线就买
if self.dataclose[0] > self.sma[0]:
# BUY, BUY, BUY!!! (with all possible default parameters)
self.log('BUY CREATE, %.2f' % self.dataclose[0])
# Keep track of the created order to avoid a 2nd order
self.order = self.buy()
else:
if self.dataclose[0] < self.sma[0]:
# 小于均线卖卖卖!
self.log('SELL CREATE, %.2f' % self.dataclose[0])
# Keep track of the created order to avoid a 2nd order
self.order = self.sell()
def stop(self):
self.log('(MA Period %2d) Ending Value %.2f' % (self.params.maperiod, self.broker.getvalue()), doprint=True)
if __name__ == '__main__':
cerebro = bt.Cerebro()
# 增加一个策略
cerebro.addstrategy(TestStrategy, printlog=True, maperiod=14)
# 增加多参数的策略
# strats = cerebro.optstrategy(TestStrategy, maperiod=range(10, 31))
#获取数据
start_date = datetime(2021, 11, 3) # 回测开始时间
end_date = datetime(2022, 11, 3) # 回测结束时间
stock_hfq_df = pd.read_csv("./data/sh600000.csv", index_col="datetime", parse_dates=True, usecols=["datetime", "open", "high", "low", "close", "volume"])
stock_hfq_df = stock_hfq_df.iloc[::-1]
data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date) # 加载数据
cerebro.adddata(data) # 将数据传入回测系统
cerebro.broker.setcash(100000.0)
# Set the commission - 0.1% ... divide by 100 to remove the %
cerebro.broker.setcommission(commission=0)
# Add a FixedSize sizer according to the stake 每次买卖的股数量
cerebro.addsizer(bt.sizers.FixedSize, stake=100)
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
cerebro.run()
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
cerebro.plot()