-
Notifications
You must be signed in to change notification settings - Fork 46
/
ldpc_h2g.c
364 lines (309 loc) · 13.8 KB
/
ldpc_h2g.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/* Invert sparse binary H for LDPC*/
/* Author : Igor Kozintsev igor@ifp.uiuc.edu
Please let me know if you find bugs in this code (I did test
it but I still have some doubts). All other comments are welcome
too :) !
I use a simple algorithm to invert H.
We convert H to [I | A]
[junk ]
using column reodering and row operations (junk - a few rows of H
which are linearly dependent on the previous ones)
G is then found as G = [A'|I]
G is stored as array of doubles in Matlab which is very inefficient.
Internal representation in this programm is unsigned char. Please modify
the part which writes G if you wish.
*/
#include <math.h>
#include "mex.h"
/* Input Arguments: tentative H matrix*/
#define H_IN prhs[0]
#define Q_IN prhs[1] /* field base */
/* Output Arguments: final matrices*/
#define H_OUT plhs[0]
#define G_OUT plhs[1]
/************************************ GFq math *******************************/
/* This file contains lookup tables and routines required
* to perform the field operations over GF(q), i.e. addition
* and multiplication.
*
* Addition is easy, we use exclusive-or operation.
* For multiplication we need two tables for each q.
* The first is the logarithm table, and the second
* is the exponential table. We catch multiplication
* by zero and one separately.
*
* Source for tables: MacWilliams and Sloane, fig 4.5
*
* WARNING: for speed, no check is made that legal values
* are supplied.
*/
const int log4[4] = {0,0,1,2}; /* stores i at address \alpha^i */
const int log8[8] = {0,0,1,3,2,6,4,5};
const int log16[16] = {0,0,1,4,2,8,5,10,3,14,9,7,6,13,11,12};
const int log32[32] = {0,0,1,18,2,5,19,11,3,29,6,27,20,8,12,23,4,\
10,30,17,7,22,28,26,21,25,9,16,13,14,24,15};
const int log64[64] = {0,0,1,6,2,12,7,26,3,32,13,35,8,48,27,18,4,24,\
33,16,14,52,36,54,9,45,49,38,28,41,19,56,5,62,\
25,11,34,31,17,47,15,23,53,51,37,44,55,40,10,\
61,46,30,50,22,39,43,29,60,42,21,20,59,57,58};
const int log128[128] = {0,0,1,31,2,62,32,103,3,7,63,15,33,84,104,\
93, 4,124,8,121,64,79,16,115,34,11,85,38,105,46,94,51,\
5,82,125,60,9,44,122,77,65,67,80,42,17,69,116,23,35,118,\
12,28,86,25,39,57,106,19,47,89,95,71,52,110,6,14,83,92,126,\
30,61,102,10,37,45,50,123,120,78,114,66,41,68,22,81,59,43,76,\
18,88,70,109,117,27,24,56,36,49,119,113,13,91,29,101,87,108,\
26,55,40,21,58,75,107,54,20,74,48,112,90,100,96,97,72,98,53,73,111,99};
const int log256[256] = {0,0,1,25,2,50,26,198,3,223,51,238,27,104,199,75,4,100,\
224,14,52,141,239,129,28,193,105,248,200,8,76,113,5,138,101,47,225,\
36,15,33,53,147,142,218,240,18,130,69,29,181,194,125,106,39,249,185,\
201,154,9,120,77,228,114,166,6,191,139,98,102,221,48,253,226,152,37,\
179,16,145,34,136,54,208,148,206,143,150,219,189,241,210,19,92,131,\
56,70,64,30,66,182,163,195,72,126,110,107,58,40,84,250,133,186,61,202,\
94,155,159,10,21,121,43,78,212,229,172,115,243,167,87,7,112,192,247,\
140,128,99,13,103,74,222,237,49,197,254,24,227,165,153,119,38,184,180,\
124,17,68,146,217,35,32,137,46,55,63,209,91,149,188,207,205,144,135,151,\
178,220,252,190,97,242,86,211,171,20,42,93,158,132,60,57,83,71,109,65,\
162,31,45,67,216,183,123,164,118,196,23,73,236,127,12,111,246,108,161,59,\
82,41,157,85,170,251,96,134,177,187,204,62,90,203,89,95,176,156,169,160,\
81,11,245,22,235,122,117,44,215,79,174,213,233,230,231,173,232,116,214,\
244,234,168,80,88,175};
const int exp4[3] = {1,2,3}; /* stores \alpha^i at address i */
const int exp8[7] = {1,2,4,3,6,7,5};
const int exp16[15] = {1,2,4,8,3,6,12,11,5,10,7,14,15,13,9};
const int exp32[31] = {1,2,4,8,16,5,10,20,13,26,17,7,14,28,29,31,\
27,19,3,6,12,24,21,15,30,25,23,11,22,9,18};
const int exp64[63] = {1,2,4,8,16,32,3,6,12,24,48,35,5,10,20,40,19,\
38,15,30,60,59,53,41,17,34,7,14,28,56,51,37,\
9,18,36,11,22,44,27,54,47,29,58,55,45,25,50,\
39,13,26,52,43,21,42,23,46,31,62,63,61,57,49,33};
const int exp128[127] = {1,2,4,8,16,32,64,9,18,36,72,25,50,100,65,11,\
22,44,88,57,114,109,83,47,94,53,106,93,51,102,69,3,6,12,24,\
48,96,73,27,54,108,81,43,86,37,74,29,58,116,97,75,31,62,124,\
113,107,95,55,110,85,35,70,5,10,20,40,80,41,82,45,90,61,122,\
125,115,111,87,39,78,21,42,84,33,66,13,26,52,104,89,59,118,101,\
67,15,30,60,120,121,123,127,119,103,71,7,14,28,56,112,105,91,63,\
126,117,99,79,23,46,92,49,98,77,19,38,76,17,34,68};
const int exp256[255] = {1,2,4,8,16,32,64,128,29,58,116,232,205,135,19,38,76,\
152,45,90,180,117,234,201,143,3,6,12,24,48,96,192,157,39,78,156,\
37,74,148,53,106,212,181,119,238,193,159,35,70,140,5,10,20,40,80,\
160,93,186,105,210,185,111,222,161,95,190,97,194,153,47,94,188,101,\
202,137,15,30,60,120,240,253,231,211,187,107,214,177,127,254,\
225,223,163,91,182,113,226,217,175,67,134,17,34,68,136,13,26,52,104,\
208,189,103,206,129,31,62,124,248,237,199,147,59,118,236,197,151,51,\
102,204,133,23,46,92,184,109,218,169,79,158,33,66,132,21,42,84,168,\
77,154,41,82,164,85,170,73,146,57,114,228,213,183,115,230,209,191,99,\
198,145,63,126,252,229,215,179,123,246,241,255,227,219,171,75,150,49,\
98,196,149,55,110,220,165,87,174,65,130,25,50,100,200,141,7,14,28,56,\
112,224,221,167,83,166,81,162,89,178,121,242,249,239,195,155,43,86,172,\
69,138,9,18,36,72,144,61,122,244,245,247,243,251,235,203,139,11,22,44,\
88,176,125,250,233,207,131,27,54,108,216,173,71,142};
/* For testing:
main(){
u_int i,j,q;
while(1){
printf("please enter a b q:");
scanf("%u %u %u",&i,&j,&q);
printf("\n a * b in GF(q) = %u\n",GFq_m(i,j,q));
}
}
*/
int GFq_m(int a, int b, int q)
{
if ( a == 0 || b == 0 ) return 0 ;
if ( a == 1 ) return b ;
if ( b == 1 ) return a ;
switch (q){
case 256:
return exp256[(log256[a]+log256[b])%255];
case 128:
return exp128[(log128[a]+log128[b])%127];
case 64:
return exp64[(log64[a]+log64[b])%63];
case 32:
return exp32[(log32[a]+log32[b])%31];
case 16:
return exp16[(log16[a]+log16[b])%15];
case 8:
return exp8[(log8[a]+log8[b])%7];
case 4:
return exp4[(log4[a]+log4[b])%3];
}
mexErrMsgTxt(1,"GFq_m: I'm afraid I don't know how to multiply in GFq\n");
return 0 ;
}
int GFq_inv(int a, int q)
{
if ( a == 0) mexErrMsgTxt(1,"GFq_inv: no inverse for 0!\n");;
if ( a == 1 ) return 1 ;
switch (q){
case 256:
return exp256[(255-log256[a])];
case 128:
return exp128[(127-log128[a])];
case 64:
return exp64[(63-log64[a])];
case 32:
return exp32[(31-log32[a])];
case 16:
return exp16[(15-log16[a])];
case 8:
return exp8[(7-log8[a])];
case 4:
return exp4[(3-log4[a])];
}
mexErrMsgTxt(1,"GFq_inv: not defined inverse for GFq\n");
return 0 ;
}
int GFq_a(int a, int b)
{
return a^b;
}
/************************************ end GFq math *******************************/
void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]
)
{
unsigned char **HH, **GG;
int ii, jj, *ir, *jc, rdep, tmp, d, q, scale;
double *sr1, *sr2, *g;
int N,M,K,i,j,k,kk,nz,*irs1,*jcs1, *irs2, *jcs2;
/* Check for proper number of arguments */
if (nrhs != 2) {
mexErrMsgTxt("h2g requires two input arguments.");
} else if (nlhs != 2) {
mexErrMsgTxt("h2g requires two output arguments.");
} else if (!mxIsSparse(H_IN)) {
mexErrMsgTxt("h2g requires sparse H matrix.");
}
/* get the field base */
q = (int)mxGetScalar(Q_IN);
/* read sparse matrix H */
sr1 = mxGetPr(H_IN);
irs1 = mxGetIr(H_IN); /* row */
jcs1 = mxGetJc(H_IN); /* column */
nz = mxGetNzmax(H_IN); /* number of nonzero elements (they are ones)*/
M = mxGetM(H_IN);
N = mxGetN(H_IN);
/* create working array HH[row][column]*/
HH = (unsigned char **)mxMalloc(M*sizeof(unsigned char *));
for(i=0 ; i<M ; i++){
HH[i] = (unsigned char *)mxMalloc(N*sizeof(unsigned char));
}
for(i=0 ; i<M ; i++)
for(j=0 ; j<N ; j++)
HH[i][j] = 0; /* initialize all to zero */
k=0;
for(j=0 ; j<N ; j++) {
for(i=0 ; i<(jcs1[j+1]-jcs1[j]) ; i++) {
ii = irs1[k]; /* index in column j*/
HH[ii][j] = (unsigned char)sr1[k]; /* put nonzeros */
k++;
}
}
/* invert HH matrix here */
/* row and column indices */
ir = (int *)mxMalloc(M*sizeof(int));
jc = (int *)mxMalloc(N*sizeof(int));
for( i=0 ; i<M ; i++)
ir[i] = i;
for( j=0 ; j<N ; j++)
jc[j] = j;
/* perform Gaussian elimination on H, store reodering operations */
rdep = 0; /* number of dependent rows in H*/
d = 0; /* current diagonal element */
while( (d+rdep) < M) { /* cycle through independent rows of H */
j = d; /* current column index along row ir[d] */
while( (HH[ir[d]][jc[j]] == 0) && (j<(N-1)) )
j++; /* find first nonzero element in row i */
if( HH[ir[d]][jc[j]] ) { /* found nonzero element */
/* swap columns */
tmp = jc[d]; jc[d] = jc[j]; jc[j] = tmp;
if(q==2) { /* GF2 */
/* eliminate current column using row operations */
for(ii=0 ; ii<M ; ii++)
if(HH[ir[ii]][jc[d]] && (ii != d)) /* nonzero and non-diagonal */
for(jj=d ; jj<N ; jj++)
HH[ir[ii]][jc[jj]] = (HH[ir[ii]][jc[jj]]+HH[ir[d]][jc[jj]])%2;
}
else { /* GFq */
scale = GFq_inv(HH[ir[d]][jc[d]],q); /* inverse of the diag. element */
/* scale the current row to make the first element 1 */
for(jj=0 ; jj<N ; jj++)
HH[ir[d]][jc[jj]] = GFq_m(HH[ir[d]][jc[jj]],scale,q);
/* eliminate current column using row operations */
for(ii=0 ; ii<M ; ii++) {
if(HH[ir[ii]][jc[d]] && (ii != d)) {
scale = HH[ir[ii]][jc[d]];
for(jj=d ; jj<N ; jj++) {
tmp = GFq_m(HH[ir[d]][jc[jj]],scale,q);
HH[ir[ii]][jc[jj]] = GFq_a(HH[ir[ii]][jc[jj]],tmp);
}
}
}
}
}
else { /* all zeros - need to delete this row and update indices */
rdep++; /* increase number of dependent rows */
tmp = ir[d];
ir[d] = ir[M-rdep];
ir[M-rdep] = tmp;
d--; /* no diagonal element is found */
}
d++; /* increase the number of diagonal elements */
}/*while i+rdep*/
/* done inverting HH */
K = N-M+rdep; /* true K */
/* create G matrix G = [A'| I] if H = [I|A]*/
GG = (unsigned char **)mxMalloc(K*sizeof(unsigned char *));
for(i=0 ; i<K ; i++){
GG[i] = (unsigned char *)mxMalloc(N*sizeof(unsigned char));
}
for(i=0 ; i<K ; i++)
for(j=0 ; j<(N-K) ; j++) {
tmp = (N-K+i);
GG[i][j] = HH[ir[j]][jc[tmp]];
}
for(i=0 ; i<K ; i++)
for(j=(N-K); j<N ; j++)
if(i == (j-N+K) ) /* diagonal */
GG[i][j] = 1;
else
GG[i][j] = 0;
/* NOTE, it is a very inefficient way to store G. Change to taste!*/
G_OUT = mxCreateDoubleMatrix(K, N, mxREAL);
/* Assign pointers to the output matrix */
g = mxGetPr(G_OUT);
for(i=0 ; i<K ; i++)
for(j=0 ; j<N; j++)
g[i+j*K] = GG[i][j];
H_OUT = mxCreateSparse(M,N,nz,mxREAL);
sr2 = mxGetPr(H_OUT);
irs2 = mxGetIr(H_OUT); /* row */
jcs2 = mxGetJc(H_OUT); /* column */
/* Write H_OUT swapping columns according to jc */
k = 0;
for (j=0; (j<N ); j++) {
jcs2[j] = k;
tmp = jcs1[jc[j]+1]-jcs1[jc[j]];
for (i=0; i<tmp ; i++) {
kk = jcs1[jc[j]]+i;
sr2[k] = sr1[kk];
irs2[k] = irs1[kk];
k++;
}
}
jcs2[N] = k;
/* free the memory */
for( j=0 ; j<M ; j++) {
mxFree(HH[j]);
}
mxFree(HH);
mxFree(ir);
mxFree(jc);
for(i=0;i<K;i++){
mxFree(GG[i]);
}
mxFree(GG);
return;
}