-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_fluid_backup.py
966 lines (855 loc) · 31 KB
/
run_fluid_backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
# -*- coding: utf-8 -*
# %%
import os
import sys
import math
import subprocess
import numpy as np
import paddle.fluid as fluid
model_path = "/data/coremodels/Lens_YoloNano"
checked_model_path = model_path + "/" + "checked_model"
feed_path = model_path + "/" + "feeds"
output_path = model_path + "/" + "outputs"
need_save = False
diff_threshold = 0.1
feed_all_1 = True
is_lod = False
mobile_model_path = ""
fast_check = False
is_sample_step = False
sample_step = 1
sample_num = 100
need_encrypt = False
checked_encrypt_model_path = "checked_encrypt_model"
output_var_filter = []
output_key_filter = {}
check_shape = False
quantification = False
quantification_fold = 1000
architecture = "arm-v7a"
# architecture = "arm-v8a"
correct_persistable = False
np.set_printoptions(linewidth=150)
mobile_exec_root = "/data/local/tmp/bin"
mobile_src_root = os.path.abspath("../../../")
if mobile_src_root.endswith("/"):
mobile_src_root = mobile_src_root[:-1]
dot = "•"
def black(x):
return "\033[30m" + str(x) + "\033[0m"
def red(x):
return "\033[31m" + str(x) + "\033[0m"
def green(x):
return "\033[32m" + str(x) + "\033[0m"
def yellow(x):
return "\033[33m" + str(x) + "\033[0m"
def reset(x):
return "\033[0m" + str(x)
# %%
def print_e(e):
print('str(Exception):\t', str(Exception))
print('str(e):\t\t', str(e))
print('repr(e):\t', repr(e))
# %%
def pp_tab(x, level=0):
header = ""
for i in range(0, level):
header += "\t"
print(header + str(x))
def pp_black(x, level=0):
pp_tab(black(x) + reset(""), level)
def pp_red(x, level=0):
pp_tab(red(x) + reset(""), level)
def pp_green(x, level=0):
pp_tab(green(x) + reset(""), level)
def pp_yellow(x, level=0):
pp_tab(yellow(x) + reset(""), level)
def sh(command):
pipe = subprocess.Popen(command,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
return pipe.stdout.read().decode("utf-8")
def push(src, dest=""):
sh("adb push {} {}".format(src, mobile_exec_root + "/" + dest))
pp_yellow(dot + " start inspecting fluid model")
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
# %%
# 加载模型
def load_model(model_path):
prog, feeds, fetches = fluid.io.load_inference_model(
dirname=model_path,
executor=exe,
model_filename="model",
params_filename="params")
global correct_persistable
if correct_persistable:
ops = prog.current_block().ops
vars = prog.current_block().vars
for op in ops:
for var_name in op.output_arg_names:
if var_name == "fetch":
continue
var = vars[var_name]
if var.persistable:
pp_red("has found non-persistable output var : {}".format(
var_name))
var.persistable = False
return (prog, feeds, fetches)
prog, feeds, fetches = load_model(model_path)
# %%
# 强制要求所有张量的形状,在model和params中一致,并重新保存模型
def resave_model(feed_kv):
if len(mobile_model_path) > 0:
pp_green("has set mobile_model_path, stop checking model & params", 1)
sh("cp {}/* {}".format(mobile_model_path, checked_model_path))
return
ops = prog.current_block().ops
vars = prog.current_block().vars
# 强制所有var为可持久化
p_names = []
for name in vars:
name = str(name)
v = fluid.framework._get_var(name, prog)
if not v.persistable:
v.persistable = True
p_names.append(name)
outputs = run_model(feed_kv=feed_kv)
has_found_wrong_shape = False
# 修正每个var的形状
for name in vars:
name = str(name)
v = vars[name]
if v.persistable:
v1 = fluid.global_scope().find_var(name)
try:
t1 = v1.get_tensor()
shape = t1.shape()
except:
continue
if v.desc.shape() != shape:
has_found_wrong_shape = True
v.desc.set_shape(shape)
# 恢复var的可持久化属性
for name in p_names:
v = fluid.framework._get_var(name, prog)
v.persistable = False
if not quantification:
fluid.io.save_inference_model(dirname=checked_model_path,
feeded_var_names=feeds,
target_vars=fetches,
executor=exe,
main_program=prog,
model_filename="model",
params_filename="params")
if has_found_wrong_shape:
pp_red("has found wrong shape", 1)
else:
pp_green("has not found wrong shape", 1)
pp_green(
"new model is saved into directory 【{}】".format(checked_model_path), 1)
# 分别加密model和params,加密key使用同一个
def encrypt_model():
if not need_encrypt:
return
pp_yellow(dot + dot + " encrypting model")
if not os.path.exists(checked_encrypt_model_path):
os.mkdir(checked_encrypt_model_path)
res = sh("model-encrypt-tool/enc_key_gen -l 20 -c 232")
lines = res.split("\n")
for line in lines:
if line.startswith("key:"):
line = line.replace('key:', '')
sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/model -o "
"checked_model/model.ml".format(line))
sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/params -o checked_model/params.ml"
.format(line))
pp_green("model has been encrypted, key is : {}".format(line), 1)
sh("mv {} {}".format(checked_model_path + "/*.ml",
checked_encrypt_model_path))
return
pp_red("model encrypt error", 1)
# 生成feed的key-value对
def gen_feed_kv():
feed_kv = {}
for feed_name in feeds:
feed_shape = get_feed_var_shape(feed_name)
data = np.random.random(feed_shape).astype("float32")
feed_kv[feed_name] = data
if feed_all_1:
feed_kv[feed_name] = np.ones(feed_shape).astype("float32")
return feed_kv
# 保存feed的key-value对
def save_feed_kv(feed_kv):
for feed_name in feed_kv:
feed_data = feed_kv[feed_name]
feed_list = feed_data.flatten().tolist()
if not os.path.exists(feed_path):
os.mkdir(feed_path)
file_name = feed_name.replace("/", "_")
out_file = open(feed_path + "/" + file_name, "w")
for feed_item in feed_list:
out_file.write("{}\n".format(feed_item))
out_file.close()
last_feed_var_name = None
last_feed_file_name = None
last_feed_var_lod = None
# 加载feed的key-value对
def load_feed_kv():
if not os.path.exists(feed_path):
return None
global last_feed_var_name
global last_feed_file_name
global last_feed_var_lod
feed_kv = {}
pp_yellow(dot + dot + " checking feed info")
pp_green("feed data is saved into directory 【{}】".format(feed_path), 1)
for feed_name in feeds:
feed_shape = get_feed_var_shape(feed_name)
pp_tab(
"feed var name : {}; feed var shape : {}".format(
feed_name, feed_shape), 1)
file_name = feed_name.replace("/", "_")
last_feed_var_name = feed_name
last_feed_file_name = file_name
feed_file_path = feed_path + "/" + file_name
if not os.path.exists(feed_file_path):
return None
data = np.loadtxt(feed_file_path)
expected_len = 1
for dim in feed_shape:
expected_len *= dim
if len(np.atleast_1d(data)) != expected_len:
return None
data = data.reshape(feed_shape).astype("float32")
if is_lod:
data_shape = [1]
for dim in feed_shape:
data_shape.append(dim)
data = data.reshape(data_shape).astype("float32")
tensor = fluid.LoDTensor()
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
data = data.reshape(feed_shape)
tensor.set(data, fluid.CPUPlace())
tensor.set_lod([lod])
last_feed_var_lod = lod
feed_kv[feed_name] = tensor
else:
feed_kv[feed_name] = data
return feed_kv
# 运行模型
def run_model(feed_kv=None):
if feed_kv is None:
feed_kv = gen_feed_kv()
outputs = exe.run(prog,
feed=feed_kv,
fetch_list=fetches,
return_numpy=False)
results = []
for output in outputs:
results.append(np.array(output))
return results
# 获取变量形状
def get_var_shape(var_name):
vars = prog.current_block().vars
shape = vars[var_name].desc.shape()
for i in range(len(shape)):
dim = shape[i]
if dim == -1:
shape[i] = 1
return shape
# 获取输入变量形状
def get_feed_var_shape(var_name):
# 如果想写死输入形状,放开以下语句
# return [1, 3, 224, 224]
return get_var_shape(var_name)
persistable_cache = []
# 所有var,全部变成持久化
def force_all_vars_to_persistable():
global persistable_cache
for var_name in vars.keys():
var_name = str(var_name)
v = fluid.framework._get_var(var_name, prog)
persistable = v.persistable
if not persistable:
persistable_cache.append(var_name)
v.persistable = True
# 恢复持久化属性
def restore_all_vars_persistable():
global persistable_cache
for var_name in vars.keys():
var_name = str(var_name)
v = fluid.framework._get_var(var_name, prog)
persistable = v.persistable
if var_name in persistable_cache:
v.persistable = False
persistable_cache = []
# 获取var的数据
def get_var_data(var_name, feed_kv=None):
output = np.array(fluid.global_scope().var(var_name).get_tensor())
return output
output_var_cache = {}
def tensor_sample(tensor):
if is_sample_step:
step = sample_step
else:
step = math.floor(len(tensor) / sample_num)
step = max(step, 1)
step = int(step)
sample = []
for i in range(0, len(tensor), step):
sample.append(tensor[i])
return sample
mean_dict = {}
def calc_mean(name, tensor):
step = 1
step = int(step)
sum = 0.0
for i in range(0, len(tensor), step):
sum += tensor[i]
mean = sum / len(tensor)
pp_green("【{0:30}】 {1:5.5f}".format(name, mean), 2)
mean_dict[name] = mean
return mean
op_cache = {}
# 获取每层输出的数据
def save_all_op_output(feed_kv=None):
force_all_vars_to_persistable()
outputs = run_model(feed_kv=feed_kv)
if not os.path.exists(output_path):
os.mkdir(output_path)
ops = prog.current_block().ops
fetch_names = []
for fetch in fetches:
fetch_names.append(fetch.name)
feed_names = feeds
if len(output_var_filter) > 0:
for fetch_name in fetch_names:
output_var_filter.append(fetch_name)
for i in range(len(ops)):
op = ops[i]
var_name = None
var_name_index = -1
for index in range(len(op.output_names)):
if op.output_names[index] in ["Y", "Out", "Output"]:
var_name_index = index
break
if var_name_index != -1:
var_name = op.output_arg_names[var_name_index]
else:
for name in op.output_arg_names:
var_name = name
if "tmp" in name:
break
if len(output_var_filter) > 0:
if var_name not in output_var_filter:
continue
# real_var_name = None
# if op.type == "fetch":
# for name in op.input_arg_names:
# real_var_name = name
# if "tmp" in name:
# break
# else:
# real_var_name = var_name
if fast_check:
if var_name not in fetch_names and var_name not in feed_names:
continue
try:
data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
sample = tensor_sample(data)
# 计算均值
calc_mean(var_name, data)
output_var_cache[var_name] = (sample)
op_cache[i] = (var_name, op)
file_name = var_name.replace("/", "_")
if need_save:
out_file = open(output_path + "/" + file_name, "w")
if var_name in feed_names:
for item in data:
out_file.write("{}\n".format(item))
else:
for item in sample:
out_file.write("{}\n".format(item))
out_file.close()
else:
pass
except:
pass
for i in range(len(ops)):
op = ops[i]
if op.type not in output_key_filter:
continue
var_name = None
var_name_index = -1
for index in range(len(op.output_names)):
if op.output_names[index] in output_key_filter[op.type]:
var_name_index = index
break
if var_name_index != -1:
var_name = op.output_arg_names[var_name_index]
else:
continue
if len(output_var_filter) > 0:
if var_name not in output_var_filter:
continue
# real_var_name = None
# if op.type == "fetch":
# for name in op.input_arg_names:
# real_var_name = name
# if "tmp" in name:
# break
# else:
# real_var_name = var_name
if fast_check:
if var_name not in fetch_names and var_name not in feed_names:
continue
try:
data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
sample = tensor_sample(data)
output_var_cache[var_name] = (sample)
op_cache[i] = (var_name, op)
file_name = var_name.replace("/", "_")
out_file = open(output_path + "/" + file_name, "w")
if var_name in feed_names:
for item in data:
out_file.write("{}\n".format(item))
else:
for item in sample:
out_file.write("{}\n".format(item))
out_file.close()
except:
pass
pp_green(
"all the op outputs are saved into directory 【{}】".format(output_path),
1)
restore_all_vars_persistable()
force_all_vars_to_persistable()
outputs = run_model(feed_kv=feed_kv)
if not os.path.exists(output_path):
os.mkdir(output_path)
ops = prog.current_block().ops
fetch_names = []
for fetch in fetches:
fetch_names.append(fetch.name)
feed_names = feeds
if len(output_var_filter) > 0:
for fetch_name in fetch_names:
output_var_filter.append(fetch_name)
for i in range(len(ops)):
op = ops[i]
var_name = None
var_name_index = -1
for index in range(len(op.output_names)):
if op.output_names[index] in ["Y", "Out", "Output"]:
var_name_index = index
break
if var_name_index != -1:
var_name = op.output_arg_names[var_name_index]
else:
for name in op.output_arg_names:
var_name = name
if "tmp" in name:
break
if len(output_var_filter) > 0:
if var_name not in output_var_filter:
continue
# real_var_name = None
# if op.type == "fetch":
# for name in op.input_arg_names:
# real_var_name = name
# if "tmp" in name:
# break
# else:
# real_var_name = var_name
if fast_check:
if var_name not in fetch_names and var_name not in feed_names:
continue
try:
data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
sample = tensor_sample(data)
output_var_cache[var_name] = (sample)
op_cache[i] = (var_name, op)
file_name = var_name.replace("/", "_")
if need_save:
out_file = open(output_path + "/" + file_name, "w")
if var_name in feed_names:
for item in data:
out_file.write("{}\n".format(item))
else:
for item in sample:
out_file.write("{}\n".format(item))
out_file.close()
except:
pass
for i in range(len(ops)):
op = ops[i]
if op.type not in output_key_filter:
continue
var_name = None
var_name_index = -1
for index in range(len(op.output_names)):
if op.output_names[index] in output_key_filter[op.type]:
var_name_index = index
break
if var_name_index != -1:
var_name = op.output_arg_names[var_name_index]
else:
continue
if len(output_var_filter) > 0:
if var_name not in output_var_filter:
continue
# real_var_name = None
# if op.type == "fetch":
# for name in op.input_arg_names:
# real_var_name = name
# if "tmp" in name:
# break
# else:
# real_var_name = var_name
if fast_check:
if var_name not in fetch_names and var_name not in feed_names:
continue
try:
data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
pp_yellow("var_name : [{}]".format(output_path), 1)
sample = tensor_sample(data)
output_var_cache[var_name] = (sample)
op_cache[i] = (var_name, op)
file_name = var_name.replace("/", "_")
out_file = open(output_path + "/" + file_name, "w")
if var_name in feed_names:
for item in data:
out_file.write("{}\n".format(item))
else:
for item in sample:
out_file.write("{}\n".format(item))
out_file.close()
except:
pass
pp_green(
"0--all the op outputs are saved into directory - 0 【{}】".format(
output_path), 1)
restore_all_vars_persistable()
ops = prog.current_block().ops
vars = prog.current_block().vars
pp_yellow(dot + dot + " checking op list")
op_types = set()
for op in ops:
op_types.add(op.type)
pp_tab("op types : {}".format(op_types), 1)
def check_mobile_results(args, fuse, mem_opt):
args = "{} {} {} {} {}".format("1" if fuse else "0",
"1" if mem_opt else "0",
"1" if quantification else "0",
quantification_fold, args)
res = sh(
"adb shell \"cd {} && export LD_LIBRARY_PATH=. && ./test-net {}\"".
format(mobile_exec_root, args))
lines = res.split("\n")
# for line in lines:
# print(line)
for line in lines:
if line.startswith("auto-test-debug"):
print(line)
for line in lines:
if line.startswith("mean :"):
print(line)
pp_yellow(dot + dot +
" checking paddle mobile results for {} -- {} ".format(
green("【fusion】" if fuse else "【non fusion】"),
green("【memory-optimization】"
if mem_opt else "【non-memory-optimization】")))
mobile_var_cache = {}
for line in lines:
parts = line.split(" ")
if len(parts) < 2:
continue
if "auto-test" != parts[0]:
continue
if parts[1] == "load-time-cost":
pp_green("load time cost : {}".format(parts[2]), 1)
elif parts[1] == "predict-time-cost":
pp_green("predict time cost : {}".format(parts[2]), 1)
elif parts[1] == "preprocess-time-cost":
pp_green("preprocess time cost : {}".format(parts[2]), 1)
elif parts[1] == "var":
var_name = parts[2]
values = list(map(lambda x: float(x), parts[3:]))
mobile_var_cache[var_name] = values
error_index = None
error_values1 = None
error_values2 = None
checked_names = []
fetch_names = []
for fetch in fetches:
fetch_names.append(fetch.name)
fetch_diff = 0.0
fetch_count = 0
for index in op_cache:
op_output_var_name, op = op_cache[index]
if not op_output_var_name in output_var_cache:
continue
if not op_output_var_name in mobile_var_cache:
continue
if op_output_var_name not in fetch_names:
continue
values1 = output_var_cache[op_output_var_name]
values2 = mobile_var_cache[op_output_var_name]
shape = get_var_shape(op_output_var_name) if check_shape else []
for i in range(len(values1)):
v1 = values1[i]
v2 = values2[len(shape) + i]
fetch_diff += abs(v1 - v2)
fetch_count += 1
if fetch_count != 0:
pp_yellow("output avg diff : {}".format(fetch_diff / fetch_count), 1)
for index in op_cache:
op_output_var_name, op = op_cache[index]
if mem_opt:
found_in_fetch = False
for fetch in fetches:
if op_output_var_name == fetch.name:
found_in_fetch = True
break
if not found_in_fetch:
continue
if not op_output_var_name in output_var_cache:
continue
if not op_output_var_name in mobile_var_cache:
continue
if op_output_var_name not in fetch_names:
continue
values1 = output_var_cache[op_output_var_name]
values2 = mobile_var_cache[op_output_var_name]
shape = get_var_shape(op_output_var_name) if check_shape else []
if len(values1) + len(shape) != len(values2):
error_index = index
for i in range(len(shape)):
v1 = shape[i]
v2 = values2[i]
if v1 != v2:
error_index = index
break
if error_index == None:
for i in range(len(values1)):
v1 = values1[i]
v2 = values2[len(shape) + i]
if abs(v1 - v2) > diff_threshold:
error_index = index
break
checked_names.append(op_output_var_name)
if error_index != None:
error_values1 = values1
error_values2 = values2
break
if error_index == None:
for name in fetch_names:
if name not in checked_names:
error_index = -1
break
if error_index == None:
pp_green("outputs are all correct", 1)
elif error_index == -1:
pp_red("outputs are missing")
else:
error_values1 = np.array(error_values1)
error_values2 = np.array(error_values2)
# pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
pp_red("outputs are incorrect", 1)
pp_red("fluid results are : ", 1)
pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
pp_yellow("paddle mobile results are : ", 1)
pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
if not fuse and not mem_opt:
pp_yellow("checking individual ops : ", 1)
error_index = None
error_values1 = None
error_values2 = None
checked_names = []
fetch_names = []
for fetch in fetches:
fetch_names.append(fetch.name)
for index in op_cache:
op_output_var_name, op = op_cache[index]
if mem_opt:
found_in_fetch = False
for fetch in fetches:
if op_output_var_name == fetch.name:
found_in_fetch = True
break
if not found_in_fetch:
continue
if not op_output_var_name in output_var_cache:
continue
if not op_output_var_name in mobile_var_cache:
continue
if fuse or mem_opt:
if op_output_var_name not in fetch_names:
continue
values1 = output_var_cache[op_output_var_name]
values2 = mobile_var_cache[op_output_var_name]
shape = get_var_shape(
op_output_var_name) if check_shape else []
if len(values1) + len(shape) != len(values2):
error_index = index
for i in range(len(shape)):
v1 = shape[i]
v2 = values2[i]
if v1 != v2:
error_index = index
break
if error_index == None:
for i in range(len(values1)):
v1 = values1[i]
v2 = values2[len(shape) + i]
if ((not math.isnan(v1)) and math.isnan(v2)
) or abs(v1 - v2) > diff_threshold:
error_index = index
break
checked_names.append(op_output_var_name)
if error_index != None:
error_values1 = values1
error_values2 = values2
break
if error_index == None:
for name in fetch_names:
if name not in checked_names:
error_index = -1
break
if error_index == None:
pp_green("outputs are all correct", 1)
elif error_index == -1:
pp_red("outputs are missing")
else:
error_values1 = np.array(error_values1)
error_values2 = np.array(error_values2)
# pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
pp_red(
"corresponding fluid op is {}th op, op's type is {}, wrong var name is {}"
.format(error_index, op_cache[error_index][1].type,
op_output_var_name), 1)
pp_red("fluid results are : ", 1)
pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
pp_yellow("paddle mobile results are : ", 1)
pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
# print(output_var_cache)
# print(mobile_var_cache)
#%%
def gen_meanname_vectors(mean):
keys = mean_dict.keys()
vector_string = "std::vector<std::string> tensor_names = {"
for key in keys:
vector_string += "\"" + key + "\" ,"
vector_string = vector_string[:-1]
vector_string += "};"
print(vector_string)
#%%
def main():
# 加载kv
feed_kv = load_feed_kv()
if feed_all_1:
feed_kv = None
if feed_kv == None:
feed_kv = gen_feed_kv()
save_feed_kv(feed_kv)
feed_kv = load_feed_kv()
# 预测
pp_yellow(dot + dot + " checking inference")
outputs = run_model(feed_kv=feed_kv)
pp_tab("fluid output : {}".format(outputs), 1)
# 重新保存模型
pp_yellow(dot + dot + " checking model correctness")
resave_model(feed_kv=feed_kv)
# 输出加密模型
encrypt_model()
# 输出所有中间结果
pp_yellow(dot + dot + " checking output result of every op")
save_all_op_output(feed_kv=feed_kv)
pp_yellow(dot + dot + " gen check tensor vectors")
gen_meanname_vectors(mean_dict)
pp_yellow(dot + dot + " checking fetch info")
for fetch in fetches:
fetch_name = fetch.name
fetch_shape = get_var_shape(fetch_name)
pp_tab(
"fetch var name : {}; fetch var shape : {}".format(
fetch_name, fetch_shape), 1)
# 输出所有op、var信息
pp_yellow(dot + dot + " 输出所有op、var信息")
info_file = open(model_path + "/" + "info.txt", "w")
for i in range(len(ops)):
op = ops[i]
info_file.write("{}th op: type - {}\n".format(i, op.type))
info_file.write("inputs:\n")
for var_name in op.input_arg_names:
try:
shape = get_var_shape(var_name)
shape_str = ", ".join(list(map(lambda x: str(x), shape)))
info_file.write("var {} : {}\n".format(var_name, shape_str))
except:
pass
info_file.write("outputs:\n")
for var_name in op.output_arg_names:
try:
# data = get_var_data(
# var_name, feed_kv=feed_kv).flatten().tolist()
# mean = calc_mean(mean, data)
shape = get_var_shape(var_name)
shape_str = ", ".join(list(map(lambda x: str(x), shape)))
mean = -1.0
# print(mean_dict)
if var_name in mean_dict:
mean = mean_dict[var_name]
info_file.write(
"var {0:*^20} : {1:-^10} mean: {2:5.5f}\n".format(
var_name, shape_str, mean))
except Exception as e:
print_e(e)
info_file.close()
# 开始检查mobile的正确性
print("")
print("==================================================")
print("")
pp_yellow(dot +
" start inspecting paddle mobile correctness & performance")
push(checked_model_path)
push(feed_path + "/" + last_feed_file_name, "input.txt")
push(mobile_src_root +
"/build/release/{}/build/libpaddle-mobile.so".format(architecture))
push(mobile_src_root +
"/build/release/{}/build/cl_kernel".format(architecture))
push(mobile_src_root + "/test/build/test-net")
last_feed_var_shape = get_feed_var_shape(last_feed_var_name)
args = str(len(last_feed_var_shape))
for dim in last_feed_var_shape:
args += " " + str(dim)
if is_lod:
args += " 1"
args += " " + str(len(last_feed_var_lod))
for dim in last_feed_var_lod:
args += " " + str(dim)
else:
args += " 0"
args += " " + str(len(output_var_cache))
args += " " + str(1 if is_sample_step else 0)
if is_sample_step:
args += " " + str(sample_step)
else:
args += " " + str(sample_num)
for var_name in output_var_cache.keys():
args += " " + var_name
args += " " + str(1 if check_shape else 0)
if not fast_check:
check_mobile_results(args, False, False)
# check_mobile_results(args, False, True)
# check_mobile_results(args, True, False)
# check_mobile_results(args, True, True)
if __name__ == "__main__":
main()