forked from 935963004/LaBraM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_vqnsp_training.py
339 lines (285 loc) · 14.9 KB
/
run_vqnsp_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# --------------------------------------------------------
# Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI
# By Wei-Bang Jiang
# Based on BEiT-v2, timm, DeiT, and DINO code bases
# https://github.com/microsoft/unilm/tree/master/beitv2
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# ---------------------------------------------------------
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import os
from pathlib import Path
from timm.models import create_model
from optim_factory import create_optimizer
from engine_for_vqnsp import evaluate, train_one_epoch, calculate_codebook_usage
from utils import NativeScalerWithGradNormCount as NativeScaler
import modeling_vqnsp
import utils
def get_args():
parser = argparse.ArgumentParser('LaBraM pre-training script', add_help=False)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--save_ckpt_freq', default=20, type=int)
# Model parameters
parser.add_argument('--model', default='vqnsp_encoder_base_decoder_3x200x12', type=str, metavar='MODEL', help='Name of model to train')
parser.add_argument('--codebook_n_emd', default=8192, type=int, metavar='MODEL',
help='number of codebook')
parser.add_argument('--codebook_emd_dim', default=32, type=int, metavar='MODEL',
help='number of codebook')
parser.add_argument('--ema_decay', default=0.99, type=float, metavar='MODEL', help='ema decay for quantizer')
parser.add_argument('--quantize_kmeans_init', action='store_true', help='enable kmeans_init for quantizer')
parser.add_argument('--input_size', default=1600, type=int, help='EEG input size for backbone')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD.
(Set the same value with args.weight_decay to keep weight decay no change)""")
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR',
help='learning rate (default: 5e-5)')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='epochs to warmup LR, if scheduler supports')
# Dataset parameters
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--dist_eval', action='store_true', default=True,
help='Enabling distributed evaluation')
parser.add_argument('--disable_eval', action='store_true', default=False)
parser.add_argument('--eval', action='store_true', default=False, help="Perform evaluation only")
parser.add_argument('--calculate_codebook_usage', action='store_true', default=False)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser.parse_args()
def get_model(args, **kwargs):
model = create_model(
args.model,
pretrained=False,
as_tokenzer=False,
n_code=args.codebook_n_emd,
code_dim=args.codebook_emd_dim,
EEG_size=args.input_size,
decay=args.ema_decay,
quantize_kmeans_init=args.quantize_kmeans_init
)
return model
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
model = get_model(args)
# get dataset
# datasets with the same montage can be packed within a sublist
datasets_train = [
["path/to/dataset1", "path/to/dataset2"], # e.g., 64 channels for dataset1 and dataset2
["path/to/dataset3", "path/to/dataset4"], # e.g., 32 channels for dataset3 and dataset4
]
# time window for each sublist in dataset_train
# to ensure the total sequence length be around 256 for each dataset
time_window = [
4, # set the time window to 4 so that the sequence length is 4 * 64 = 256
8, # set the time window to 8 so that the sequence length is 8 * 32 = 256
]
dataset_train_list, train_ch_names_list = utils.build_pretraining_dataset(datasets_train, time_window, stride_size=200)
datasets_val = [
["path/to/datasets_val"]
]
if args.disable_eval:
dataset_val_list = None
else:
dataset_val_list, val_ch_names_list = utils.build_pretraining_dataset(datasets_val, [4])
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_rank = global_rank
num_training_steps_per_epoch = sum([len(dataset) for dataset in dataset_train_list]) // args.batch_size // num_tasks
sampler_train_list = []
for dataset in dataset_train_list:
sampler_train = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=sampler_rank, shuffle=True
)
sampler_train_list.append(sampler_train)
print("Sampler_train = %s" % str(sampler_train))
sampler_eval_list = []
if args.dist_eval:
# if len(dataset_val) % num_tasks != 0:
# print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
# 'This will slightly alter validation results as extra duplicate entries are added to achieve '
# 'equal num of samples per-process.')
for dataset in dataset_val_list:
sampler_val = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=global_rank, shuffle=False)
sampler_eval_list.append(sampler_val)
else:
for dataset in dataset_val_list:
sampler_val = torch.utils.data.SequentialSampler(dataset)
sampler_eval_list.append(sampler_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train_list = []
for dataset, sampler in zip(dataset_train_list, sampler_train_list):
data_loader_train = torch.utils.data.DataLoader(
dataset, sampler=sampler,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_train_list.append(data_loader_train)
if dataset_val_list is not None:
data_loader_val_list = []
for dataset, sampler in zip(dataset_val_list, sampler_eval_list):
data_loader_val = torch.utils.data.DataLoader(
dataset, sampler=sampler,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
data_loader_val_list.append(data_loader_val)
else:
data_loader_val_list = None
model.to(device)
model_without_ddp = model
if not args.eval:
print("Model = %s" % str(model_without_ddp))
for part in ['encoder', 'decoder']:
model_part = eval(f"model.{part}")
n_learnable_parameters = sum(p.numel() for p in model_part.parameters() if p.requires_grad)
n_fix_parameters = sum(p.numel() for p in model_part.parameters() if not p.requires_grad)
print(f'number of learnable params in model.{part}: {n_learnable_parameters / 1e6} M')
print(f'number of fixed params in model.{part}: {n_fix_parameters / 1e6} M')
n_learnable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_fix_parameters = sum(p.numel() for p in model.parameters() if not p.requires_grad)
print(f'total number of learnable params: {n_learnable_parameters / 1e6} M')
print(f'total number of fixed params in : {n_fix_parameters / 1e6} M')
total_batch_size = args.batch_size * utils.get_world_size()
args.lr = total_batch_size / 128 * args.lr
print("LR = %.8f" % args.lr)
print("Min LR = %.8f" % args.min_lr)
print("Weigth Decay = %.8f" % args.weight_decay)
print("Batch size = %d" % total_batch_size)
print("Number of training steps = %d" % num_training_steps_per_epoch)
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
print("Use step level LR & WD scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if args.eval:
test_stats = evaluate(data_loader_val, model, device, log_writer, 0, args=args)
exit(0)
if args.calculate_codebook_usage:
test_stats = calculate_codebook_usage(data_loader_val, model, device, log_writer, 0, args=args)
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
for data_loader_train in data_loader_train_list:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch)
train_stats = train_one_epoch(
model,
data_loader_train_list,
optimizer,
device,
epoch,
loss_scaler,
args.clip_grad,
log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
ch_names_list=train_ch_names_list,
args=args
)
if args.output_dir:
# if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, save_ckpt_freq=args.save_ckpt_freq)
if data_loader_val_list is not None:
test_stats = evaluate(data_loader_val_list, model, device, log_writer, epoch, ch_names_list=val_ch_names_list, args=args)
print(f"Validation loss of the network on the {sum([len(dataset) for dataset in dataset_val_list])} test EEG: {test_stats['loss']:.4f}")
if log_writer is not None:
log_writer.update(**test_stats, head="val/loss")
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch, 'n_parameters': n_learnable_parameters}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, 'n_parameters': n_learnable_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)