-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathbd_rate_report.py
executable file
·522 lines (460 loc) · 18.1 KB
/
bd_rate_report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
#!/usr/bin/env python3
from __future__ import print_function
import argparse
import json
import os
import sys
import numpy as np
from numpy import *
from scipy import *
from scipy._lib._util import _asarray_validated
from scipy.interpolate import BPoly, interp1d, pchip
# The following implementations of pchip are copied from scipy.
"""
Copyright © 2001, 2002 Enthought, Inc.
All rights reserved.
Copyright © 2003-2019 SciPy Developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of Enthought nor the names of the SciPy Developers may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
class PchipInterpolator_new(BPoly):
def __init__(self, x, y, axis=0, extrapolate=None):
x = _asarray_validated(x, check_finite=False, as_inexact=True)
y = _asarray_validated(y, check_finite=False, as_inexact=True)
axis = axis % y.ndim
xp = x.reshape((x.shape[0],) + (1,) * (y.ndim - 1))
yp = np.rollaxis(y, axis)
dk = self._find_derivatives(xp, yp)
data = np.hstack((yp[:, None, ...], dk[:, None, ...]))
_b = BPoly.from_derivatives(x, data, orders=None)
super(PchipInterpolator_new, self).__init__(_b.c, _b.x, extrapolate=extrapolate)
self.axis = axis
def roots(self):
"""
Return the roots of the interpolated function.
"""
return (PPoly.from_bernstein_basis(self._bpoly)).roots()
@staticmethod
def _edge_case(h0, h1, m0, m1):
# one-sided three-point estimate for the derivative
d = ((2 * h0 + h1) * m0 - h0 * m1) / (h0 + h1)
# try to preserve shape
mask = np.sign(d) != np.sign(m0)
mask2 = (np.sign(m0) != np.sign(m1)) & (np.abs(d) > 3.0 * np.abs(m0))
mmm = (~mask) & mask2
d[mask] = 0.0
d[mmm] = 3.0 * m0[mmm]
return d
@staticmethod
def _find_derivatives(x, y):
# Determine the derivatives at the points y_k, d_k, by using
# PCHIP algorithm is:
# We choose the derivatives at the point x_k by
# Let m_k be the slope of the kth segment (between k and k+1)
# If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0
# else use weighted harmonic mean:
# w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1}
# 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1})
# where h_k is the spacing between x_k and x_{k+1}
y_shape = y.shape
if y.ndim == 1:
# So that _edge_case doesn't end up assigning to scalars
x = x[:, None]
y = y[:, None]
hk = x[1:] - x[:-1]
mk = (y[1:] - y[:-1]) / hk
smk = np.sign(mk)
condition = (smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0)
w1 = 2 * hk[1:] + hk[:-1]
w2 = hk[1:] + 2 * hk[:-1]
# values where division by zero occurs will be excluded
# by 'condition' afterwards
with np.errstate(divide="ignore"):
whmean = (w1 / mk[:-1] + w2 / mk[1:]) / (w1 + w2)
dk = np.zeros_like(y)
dk[1:-1][condition] = 0.0
dk[1:-1][~condition] = 1.0 / whmean[~condition]
# special case endpoints, as suggested in
# Cleve Moler, Numerical Computing with MATLAB, Chap 3.4
dk[0] = PchipInterpolator_new._edge_case(hk[0], hk[1], mk[0], mk[1])
dk[-1] = PchipInterpolator_new._edge_case(hk[-1], hk[-2], mk[-1], mk[-2])
return dk.reshape(y_shape)
class PchipInterpolator_old(BPoly):
def __init__(self, x, y, axis=0, extrapolate=None):
x = _asarray_validated(x, check_finite=False, as_inexact=True)
y = _asarray_validated(y, check_finite=False, as_inexact=True)
axis = axis % y.ndim
xp = x.reshape((x.shape[0],) + (1,) * (y.ndim - 1))
yp = np.rollaxis(y, axis)
dk = self._find_derivatives(xp, yp)
data = np.hstack((yp[:, None, ...], dk[:, None, ...]))
_b = BPoly.from_derivatives(x, data, orders=None)
super(PchipInterpolator_old, self).__init__(_b.c, _b.x, extrapolate=extrapolate)
self.axis = axis
def roots(self):
"""
Return the roots of the interpolated function.
"""
return (PPoly.from_bernstein_basis(self._bpoly)).roots()
@staticmethod
def _edge_case(m0, d1, out):
m0 = np.atleast_1d(m0)
d1 = np.atleast_1d(d1)
mask = (d1 != 0) & (m0 != 0)
out[mask] = 1.0 / (1.0 / m0[mask] + 1.0 / d1[mask])
@staticmethod
def _find_derivatives(x, y):
# Determine the derivatives at the points y_k, d_k, by using
# PCHIP algorithm is:
# We choose the derivatives at the point x_k by
# Let m_k be the slope of the kth segment (between k and k+1)
# If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0
# else use weighted harmonic mean:
# w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1}
# 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1})
# where h_k is the spacing between x_k and x_{k+1}
y_shape = y.shape
if y.ndim == 1:
# So that _edge_case doesn't end up assigning to scalars
x = x[:, None]
y = y[:, None]
hk = x[1:] - x[:-1]
mk = (y[1:] - y[:-1]) / hk
smk = np.sign(mk)
condition = (smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0)
w1 = 2 * hk[1:] + hk[:-1]
w2 = hk[1:] + 2 * hk[:-1]
# values where division by zero occurs will be excluded
# by 'condition' afterwards
with np.errstate(divide="ignore"):
whmean = 1.0 / (w1 + w2) * (w1 / mk[1:] + w2 / mk[:-1])
dk = np.zeros_like(y)
dk[1:-1][condition] = 0.0
dk[1:-1][~condition] = 1.0 / whmean[~condition]
# For end-points choose d_0 so that 1/d_0 = 1/m_0 + 1/d_1 unless
# one of d_1 or m_0 is 0, then choose d_0 = 0
PchipInterpolator_old._edge_case(mk[0], dk[1], dk[0])
PchipInterpolator_old._edge_case(mk[-1], dk[-2], dk[-1])
return dk.reshape(y_shape)
parser = argparse.ArgumentParser(description="Produce bd-rate report")
parser.add_argument("run", nargs=2, help="Run folders to compare")
parser.add_argument("--anchor", help="Explicit anchor to use")
parser.add_argument(
"--overlap", action="store_true", help="Use traditional overlap instead of anchor"
)
parser.add_argument("--anchordir", nargs=1, help="Folder to find anchor runs")
parser.add_argument(
"--suffix", help="Metric data suffix (default is .out)", default=".out"
)
parser.add_argument("--format", help="Format of output", default="text")
parser.add_argument(
"--fullrange", action="store_true", help="Use full range of QPs instead of 20-55"
)
parser.add_argument("--old-pchip", action="store_true")
args = parser.parse_args()
if args.old_pchip:
pchip = PchipInterpolator_old
else:
pchip = PchipInterpolator_new
met_name = [
"PSNR",
"PSNRHVS",
"SSIM",
"FASTSSIM",
"CIEDE2000",
"PSNR Cb",
"PSNR Cr",
"APSNR",
"APSNR Cb",
"APSNR Cr",
"MSSSIM",
"Encoding Time",
"VMAF_old",
"Decoding Time",
"PSNR Y (libvmaf)",
"PSNR Cb (libvmaf)",
"PSNR Cr (libvmaf)",
"CIEDE2000 (libvmaf)",
"SSIM (libvmaf)",
"MS-SSIM (libvmaf)",
"PSNR-HVS Y (libvmaf)",
"PSNR-HVS Cb (libvmaf)",
"PSNR-HVS Cr (libvmaf)",
"PSNR-HVS (libvmaf)",
"VMAF",
"VMAF-NEG",
]
met_index = {
"PSNR": 0,
"PSNRHVS": 1,
"SSIM": 2,
"FASTSSIM": 3,
"CIEDE2000": 4,
"PSNR Cb": 5,
"PSNR Cr": 6,
"APSNR": 7,
"APSNR Cb": 8,
"APSNR Cr": 9,
"MSSSIM": 10,
"Encoding Time": 11,
"VMAF_old": 12,
"Decoding Time": 13,
"PSNR Y (libvmaf)": 14,
"PSNR Cb (libvmaf)": 15,
"PSNR Cr (libvmaf)": 16,
"CIEDE2000 (libvmaf)": 17,
"SSIM (libvmaf)": 18,
"MS-SSIM (libvmaf)": 19,
"PSNR-HVS Y (libvmaf)": 20,
"PSNR-HVS Cb (libvmaf)": 21,
"PSNR-HVS Cr (libvmaf)": 22,
"PSNR-HVS (libvmaf)": 23,
"VMAF": 24,
"VMAF-NEG": 25,
}
q_not_found = False
error_strings = []
def bdrate(file1, file2, anchorfile, fullrange):
if anchorfile:
anchor = flipud(genfromtxt(anchorfile))
a = genfromtxt(file1)
b = genfromtxt(file2)
a = a[a[:, 0].argsort()]
b = b[b[:, 0].argsort()]
a = flipud(a)
b = flipud(b)
rates = [0.06, 0.2]
qa = a[:, 0]
qb = b[:, 0]
ra = a[:, 2] * 8.0 / a[:, 1]
rb = b[:, 2] * 8.0 / b[:, 1]
bdr = zeros((4, 4))
ret = {}
for m in range(0, len(met_index)):
try:
ya = a[:, 3 + m]
yb = b[:, 3 + m]
if anchorfile:
yr = anchor[:, 3 + m]
# p0 = interp1d(ra, ya, interp_type)(rates[0]);
# p1 = interp1d(ra, ya, interp_type)(rates[1]);
if anchorfile:
p0 = yr[0]
p1 = yr[-1]
yya = ya
yyb = yb
rra = ra
rrb = rb
else:
minq = 20
maxq = 55
try:
if fullrange:
# bypass finding 20 and 55 and use the full range
raise ValueError
# path if quantizers 20 and 55 are in set
minqa_index = qa.tolist().index(minq)
maxqa_index = qa.tolist().index(maxq)
minqb_index = qb.tolist().index(minq)
maxqb_index = qb.tolist().index(maxq)
yya = ya[maxqa_index : minqa_index + 1]
yyb = yb[maxqb_index : minqb_index + 1]
rra = ra[maxqa_index : minqa_index + 1]
rrb = rb[maxqb_index : minqb_index + 1]
except ValueError:
# path if quantizers 20 and 55 are not found - use
# entire range of quantizers found, and fit curve
# on all the points, and set q_not_found to print
# a warning
q_not_found = True
minqa_index = -1
maxqa_index = 0
minqb_index = -1
maxqb_index = 0
yya = ya
yyb = yb
rra = ra
rrb = rb
p0 = max(ya[maxqa_index], yb[maxqb_index])
p1 = min(ya[minqa_index], yb[minqb_index])
a_rate = pchip(yya, log(rra))(arange(p0, p1, abs(p1 - p0) / 5000.0))
b_rate = pchip(yyb, log(rrb))(arange(p0, p1, abs(p1 - p0) / 5000.0))
if not len(a_rate) or not len(b_rate):
bdr = NaN
else:
bdr = 100 * (exp(mean(b_rate - a_rate)) - 1)
except ValueError:
bdr = NaN
except linalg.linalg.LinAlgError:
bdr = NaN
except IndexError:
bdr = NaN
if abs(bdr) > 1000:
bdr = NaN
ret[m] = bdr
# handle encode time and decode time separately
encode_times_a = a[:, 3 + met_index["Encoding Time"]]
encode_times_b = b[:, 3 + met_index["Encoding Time"]]
try:
# compute a percent change for each qp
encode_times = (encode_times_b - encode_times_a) / encode_times_a
# average the percent changes together
ret[met_index["Encoding Time"]] = encode_times.mean() * 100.0
except ZeroDivisionError:
ret[met_index["Encoding Time"]] = NaN
decode_times_a = a[:, 3 + met_index["Decoding Time"]]
decode_times_b = b[:, 3 + met_index["Decoding Time"]]
try:
decode_times = (decode_times_b - decode_times_a) / decode_times_a
ret[met_index["Decoding Time"]] = decode_times.mean() * 100.0
except ZeroDivisionError:
ret[met_index["Decoding Time"]]
return ret
metric_data = {}
try:
info_data = {}
info_data[0] = json.load(open(args.run[0] + "/info.json"))
info_data[1] = json.load(open(args.run[1] + "/info.json"))
if info_data[0]["task"] != info_data[1]["task"]:
print("Runs do not match.")
sys.exit(1)
task = info_data[0]["task"]
codec = info_data[0]["codec"]
codec_a = info_data[0]["codec"]
codec_b = info_data[1]["codec"]
except FileNotFoundError:
# no info.json, using bare directories
print("Couldn't open", args.run[0])
info_data = None
if info_data:
sets = json.load(
open(os.path.join(os.getenv("CONFIG_DIR", "rd_tool"), "sets.json"))
)
videos = sets[task]["sources"]
else:
if not args.anchor and not args.overlap:
print("You must specify an anchor to use if comparing bare result directories.")
exit(1)
videos = os.listdir(args.anchor)
if info_data and not args.overlap:
info_data[2] = json.load(
open(args.anchordir[0] + "/" + sets[task]["anchor"] + "/info.json")
)
if info_data[2]["task"] != info_data[0]["task"]:
print("Mismatched anchor data!")
sys.exit(1)
if info_data:
for video in videos:
run_a = args.run[0] + "/" + task + "/" + video + args.suffix
run_b = args.run[1] + "/" + task + "/" + video + args.suffix
if 'ctcPresets' in info_data[0].keys():
if len(info_data[0]["ctcPresets"]) > 1 or 'av2-all' in info_data[0]["ctcPresets"]:
run_a = args.run[0] + "/" + codec_a + "/" + task + "/" + video + args.suffix
if 'ctcPresets' in info_data[1].keys():
if len(info_data[1]["ctcPresets"]) > 1 or 'av2-all' in info_data[1]["ctcPresets"]:
run_b = args.run[1] + "/" + codec_b + "/" + task + "/" + video + args.suffix
if args.overlap:
metric_data[video] = bdrate(
run_a,
run_b,
None,
args.fullrange,
)
else:
metric_data[video] = bdrate(
run_a,
run_b,
args.anchordir[0]
+ "/"
+ sets[task]["anchor"]
+ "/"
+ task
+ "/"
+ video
+ args.suffix,
args.fullrange,
)
else:
for video in videos:
metric_data[video] = bdrate(
args.run[0] + "/" + video,
args.run[1] + "/" + video,
args.anchor + "/" + video,
args.fullrange,
)
filename_len = 40
avg = {}
for m in range(0, len(met_index)):
avg[m] = mean([metric_data[x][m] for x in metric_data])
categories = {}
if info_data:
if "categories" in sets[task]:
for category_name in sets[task]["categories"]:
category = {}
for m in range(0, len(met_index)):
category[m] = mean(
[metric_data[x][m] for x in sets[task]["categories"][category_name]]
)
categories[category_name] = category
if q_not_found:
error_strings.append(
"Warning: Quantizers 20 and 55 not found in results, using maximum overlap"
)
if args.format == "text":
for error in error_strings:
print(error)
print("%10s: %9.2f%% %9.2f%% %9.2f%%" % ("PSNR YCbCr", avg[0], avg[5], avg[6]))
print("%10s: %9.2f%%" % ("PSNRHVS", avg[1]))
print("%10s: %9.2f%%" % ("SSIM", avg[2]))
print("%10s: %9.2f%%" % ("MSSSIM", avg[10]))
print("%10s: %9.2f%%" % ("CIEDE2000", avg[4]))
print()
print(("%" + str(filename_len) + "s ") % "file", end="")
for name in met_name:
print("%9s " % name, end="")
print("")
print(
"------------------------------------------------------------------------------------------"
)
for category_name in sorted(categories):
metric = categories[category_name]
print(("%" + str(filename_len) + "s ") % category_name[0:filename_len], end="")
for met in met_name:
print("%9.2f " % metric[met_index[met]], end="")
print("")
print(
"------------------------------------------------------------------------------------------"
)
for video in sorted(metric_data):
metric = metric_data[video]
print(("%" + str(filename_len) + "s ") % video[0:filename_len], end="")
for met in met_name:
print("%9.2f " % metric[met_index[met]], end="")
print("")
print(
"------------------------------------------------------------------------------------------"
)
print(("%" + str(filename_len) + "s ") % "Average", end="")
for met in met_name:
print("%9.2f " % avg[met_index[met]], end="")
print("")
print("AWCY Report v0.4")
if info_data:
print("Reference: " + info_data[0]["run_id"])
print("Test Run: " + info_data[1]["run_id"])
if args.overlap:
print("Range: overlap")
elif info_data:
print("Range: Anchor " + info_data[2]["run_id"])
elif args.format == "json":
output = {}
output["metric_names"] = met_name
output["metric_data"] = metric_data
output["average"] = avg
output["categories"] = categories
output["error_strings"] = error_strings
print(json.dumps(output, indent=2))